首页

H.P VEGF-PNPs缓释微球的制备功能 及生物学活性检测

点击:0时间:2024-02-12 22:26:03

任玮++++张永红++肖威++陆兴++++赵良启

[摘要] 意图 制备血管内皮成长因子(VEGF)可降解缓释微球,调查其生物活性的保存状况以及对血管内皮细胞的效果。 办法 选用W1/O/W2超声乳化法制备羟基丁酸与羟基痛苦共聚物载血管内皮成长因子纳米微球,选用三步梯度筛网法培育肾微血管内皮细胞,依照培育液中所含成分不同分为3组:血管内皮成长因子组、纳米微球组、对照组,其间前两组血管内皮成长因子的有用质量浓度别离设为10、20、50 μg/L。 成果 培育第1、3天,血管内皮成长因子组与纳米微球组吸光度值比较差异无核算学含义(P>0.05),但吸光度值显着高于对照组(P<0.05),即血管内皮成长因子对肾微血管内皮细胞具有显着促增殖效果;第5、7天纳米微球组吸光度值高于血管内皮成长因子组(P<0.01),即纳米微球缓慢开释血管内皮成长因子,显着进步生物利费用;第7、10天载药纳米微球组微血管内皮细胞仍有较强的增殖才能,与其他两组比较,差异有核算学含义(P<0.01)。 定论 VEGF-P(HBHO)NPs对成长因子具有杰出缓释效果,比单纯VEGF对肾微血管内皮细胞有更为显着的生物学效应,能够继续促进其增殖。

[关键词] 血管内皮成长因子;微球体;血管内皮细胞;缓释制剂

[中图分类号] Q813.2[文献标识码] A[文章编号] 1674-4721(2014)06(a)-0012-05

Preparation technique,characterizationand biological effects of VEGF-P(HBHO)NPs microspheres

REN Wei1 ZHANG Yong-hong1 XIAO Wei1 LU Xing1 ZHAO Liang-qi2

1.Department of Orthopaedics,the Second Clinical Medical College of Shanxi Medical University,Taiyuan 030001,China;2.Biological Technology Research Institute of Shanxi University,Taiyuan 030006,China

[Abstract] Objective To prepare of vascular endothelial growth factor (VEGF) biodegradable slow-release microspheres,to inspect the preservation of its biological activity and the role of vascular endothelial cells. Methods Hydroxybutyric acid and hydroxy acid copolymer vascular endothelial growth factor nanometer microspheres were prepared by W1/O/W2 ultrasonic emulsification method,the renal microvascular endothelial cells was cultivated by three gradient mesh method,they were divided into three groups according to the nutrient solution contains ingredients different:VEGF group,nanospheres group and control group,among them,the former two groups of vascular endothelial growth factor of the effective mass concentration were set to 10,20,50 μg/L. Results To cultivate 1,3 days,the absorbance value between VEGF group and nanospheres group had no statistical significance (P>0.05),but the absorbance value from them were both higher than that of the control group (P<0.05),VEGF had obvious effect on promoting proliferation of renal microvascular endothelial cells.The absorbance value in nanospheres group was significantly higher than that of the VEGF group at the 5,7 days,nanometer microspheres can slow release of vascular endothelial growth factor and improve bioavailability,microvascular endothelial cells still had a strong ability of proliferation in nanospheres group at the 7,10 days,compared with other two groups,the difference was statistically significant (P<0.01). Conclusion VEGF-P(HBHO)NPs has a good slow release effect on growth factors, have a more obvious biological effect than simple VEGF on renal microvascular endothelial cells,it can continue to promote its proliferation.

[Key words] Vascular endothelial growth factor;Microspheres;Vascular endothelial cells;Sustained release formulations

在安排工程中,生物活性成长因子能够促进其特定的种子细胞的增殖及分解,然后完成关节一体化各个区域的构建[1-4]。但成长因子极易被体内的蛋白酶所分解,生物利费用低,不能有用发挥其生物学效果[5-7]。为了处理这些问题,本课题组运用发酵技术开发出了一种新式多聚羟基烷酸-羟基丁酸与羟基痛苦共聚物(PHBHOx),不只具有多聚羟基烷酸-羟基丁酸的通性[8-10],并且其柔韧性与加工功用得到较大改进[11-12]。本课题制备PHBHOx载血管内皮成长因子(vascular endothelial growth factor,VEGF)纳米微球,并探究研讨该纳米微球的体外功用。

1 资料与办法

1.1 试验资料

1.1.1 首要资料及试剂PHBHOx(HB∶HO=9∶1,黏均分子量1.85×105 Da,由本试验室发酵出产所得);VEGF(武汉博士得生物工程有限公司,我国);二氯甲烷(天津星马克科技发展有限公司,我国);聚乙烯醇(PVA,上海研生实业有限公司,我国)。

1.1.2 首要仪器磁力加热拌和器(浙江金坛恒丰制作有限公司,我国);超声波细胞破坏仪(宁波新艺超声设备有限公司,我国)。

1.1.3 试验动物9周龄乳兔1只,分量1000 g,来源于山西医科大学试验动物中心,许可证号:SYXK(晋)2009-0004。

1.2 办法

1.2.1 载VEGF纳米缓释微球的制备称取必定量的PHBHOx溶于2 ml二氯甲烷(含5% Tween 80,1% Span 80)中加热溶解,作为溶液1,取10 μg VEGF溶于0.5 ml PBS液中作为溶液2,按3%的浓度秤取必定量的PVA溶于20 ml蒸馏水中,加热拌和溶解后,降至常温,作为溶液3。调理超声波细胞破坏仪,输出功率为250 W,有用时刻30 s,冰浴条件下,用超声波细胞破坏仪超声溶液1与2至乳状。将溶液3参加到乳状混合液中,调理超声波细胞破坏仪,输出功率为450 W,同前超声,至乳状。将混合乳状液在常温下,机械拌和5 h,除掉二氯甲烷,15 000 r/min高速离心除掉游离药物与外表活性剂(PVA;Tween 80;Span 80),用PBS液充沛洗刷3次,共约700 ml,别离用不同孔径微孔滤膜由大到小顺次过滤,滤出物经冷冻干燥仪冷冻干燥后,并60Co灭菌备用。

1.2.2 兔肾微血管内皮细胞的别离传代培育选用三步梯度筛网法[13-14]进行别离及培育。空气栓塞处死乳兔后取双肾,体积分数75%乙醇浸泡5 min,Hank缓冲液漂洗3次,剥离被膜和脂肪安排,取肾皮质,剪成约1 mm×1 mm×1 mm安排块,置于100目尼龙滤网上研磨,滤过物置于150目滤网上研磨,最后用200目尼龙滤网搜集滤过物;M199培育液冲刷并搜集滤过物,1200 r/min离心5 min,离心半径15.5 cm,弃上清液,用0.1%Ⅳ型胶原酶(1 g/L)37℃消化滤过物30 min,离心,取沉淀物用M199培育液(含体积分数20%胎牛血清,0.02 mg/L血管内皮细胞成长因子,青、链霉素各100 U/ml)吹打匀称,细胞计数,以1×1010/L细胞浓度置于25 ml培育瓶作原代培育,倒置显微镜下调查细胞状况。72 h后初次换液,随后每隔48 h换液,待细胞增殖交融至80%~90%时,以0.25%胰蛋白酶(含0.02%乙胺四乙酸)消化传代,1∶2传至第3代备用。

1.2.3 试验分组试验分组依据所含成分的不同分为3组。A组:VEGF组;B组:纳米微球组;C组:对照组。A组为单纯10%胎牛血清DMEM液+VEGF;B组将VEGF-P(HBHO)NPs参加10%胎牛血清DMEM液。C组为没有增加药物的10%胎牛血清DMEM液(对照组)。前两组培育液中VEGF浓度别离设为10、20、50 ng/ml 3个浓度。提取培育至第3代的兔肾微血管内皮细胞,用培育液调整浓度至1×107个/L,接种到96孔板上,每孔200 μl。使细胞同步成长后,隔天换液1次,并于1、3、5、7、10 d搜集细胞,A、B两组每个时相点设置4个重复丈量孔,C组每个时相点设置2个重复丈量孔。

1.2.4 MTT法检测缓释纳米微球对肾血管内皮细胞生机的影响别离于培育1、3、5、7、10 d,惯例先后参加5%四甲基偶氮唑盐(MTT)20 μl,经过4 h后再参加二甲基亚砜150 μl,低速振动,用酶联免疫检测仪顺次丈量各孔的吸光度值,检测波长为490 nm,以反映VEGF对肾微血管内皮细胞生机的影响。

1.3 核算学处理

本研讨所得数据均选用SPSS 13.0核算软件进行核算分析,计数资料以x±s标明,选用t查验,计数资料选用方差分析,以P<0.05为差异有核算学含义。

2 成果

2.1 纳米微球及肾微血管内皮细胞形状的调查

纳米缓释微球外表形状,根本完好,巨细较均一,涣散性可;载药纳米微球的均匀粒径为(524.75±67.46) nm(图1)。肾微血管内皮细胞呈短胖梭形,镶嵌排列,互不堆叠,发生接触抑制呈铺路鹅卵石形(图2)。

图1 纳米微球扫描电镜图

图2 肾微血管内皮细胞显微镜图

2.2 载VEGF缓释纳米微球载药量与包封率的测定成果

选用ELISA法在450 nm波利益,测定某一规范孔的OD值,吸光度(A)与浓度(C)呈较好线性关系,回归方程为:A=0.002C+0.122,r2=0.997(表1、图3)。

表1 在450nm波利益必定浓度的吸光度值

图3 在450 nm波利益必定浓度的吸光度值线性关系

依据公式,载药量=(微球中所含药物重/微球的总重)×100%;包封率=(体系中包封与未包封的总药量-液体介质中未包封的药量/体系中包封与未包封的总药量)×100%;得到载VEGF缓释纳米微球的载药量为:(1.257±0.024)×10-3%,包封率为:(90.77±1.67)%(表2)。

表2 PHBHOx载VEGF纳米微球载药量及包封率的测定成果

2.3 PHBHOx载VEGF缓释纳米微球体外释药率的测定

准确称取10 mg纳米粒涣散于100 ml pH 7.4的PBS液中,水浴恒温37℃,并以必定的速度低速拌和,别离在0、1、3、5、7、9、11、13、15 d取样5 ml,一起弥补同体积的PBS,立即对样液进行离心(15 000 r/min,10 min),取上清10 μl,测OD值,代入规范曲线回归方程,核算累积释药百分数,并制图(x轴释药天数,y轴释药百分比)。在第1天内微球释药速率较快,这或许与微球敏捷吸水溶胀,而快速的开释包被的生物活性因子;一起也未超越20%,5 d释药率可达50%,14 d可达90%的释药率,这段时刻微球的释药率逐步减慢,这或许与微球以本身降解来开释药物有关(图4)。

图4 载VEGF的缓释纳米微球释药曲线

2.4 不同浓度的单纯VEGF、VEGF-P(HBHO)NPs及对照组对肾微血管内皮细胞增殖检测的成果

培育1~3 d,A组与B组比较,差异无核算学含义(P>0.05),即肾微血管内皮细胞在不同方式的生物活性因子的效果下,增殖无显着不同;C组与A、B组比较,差异均有核算学含义(P<0.01),标明VEGF可显着促进肾微血管内皮细胞的增殖;共培育5~7 d,A组与C组比较,差异有核算学含义,阐明VEGF可继续促进肾微血管内皮细胞的增殖,B组与A、C组比较,差异均有核算学含义,标明缓释纳米微球缓慢继续的开释VEGF;共培育7~10 d,A组与C组比较,差异无核算学含义,即VEGF的生物活性或许损失,无法发挥其促进肾微血管内皮细胞增殖分解的效果;B组与A、C组比较,差异均有核算学含义(P<0.01),标明载VEGF的纳米缓释微球依然能够缓慢开释生物活性因子,在很大程度上,延长了生物活性因子的效果时刻,显示出纳米粒子的缓释效果(表3)。

3 评论

在安排工程中,生物活性成长因子能够促进其特定的种子的增殖及分解[15-16],这其间VEGF能够为关节一体化支架基质区的构建供给成长因子[17-18],一起能够有用促进关节周围肉芽安排成长以及在创伤修正中的创伤愈合[19-20]。但由于VEGF本身归于一种蛋白质,极易被体内的蛋白酶降解,短时刻内就会被代谢,因此本身安排的修正不能被充沛满意,研讨成长因子缓释微球,能够为安排工程技术修正软骨损害铺平道路。

本研讨经过超声乳化法[12,21]制备载VEGF缓释纳米微球,并与肾微血管内皮细胞共培育,肾微血管内皮细胞在不同方式的生物活性因子的效果下,增殖无显着不同,或许与缓释纳米微球敏捷吸水溶胀,然后快速开释出所包被的生物活性因子有关;VEGF可显着促进肾微血管内皮细胞的增殖;包被在载体中的生物活性因子跟着载体资料的降解而缓慢继续释出,然后显着进步生物活性因子的生物利费用,在较长的一段时刻内可继续促进肾微血管内皮细胞的增殖,在很大程度上,延长了生物活性因子的效果时刻,显示出纳米粒子的缓释效果。

综上所述,选用超声乳化法制备的载VEGF缓释纳米微球,能够必定速率开释VEGF,能够继续有用的较长时刻促进肾血管内皮细胞的增殖及分解。制备的载药纳米粒子初期快速释药,使单纯运用成长因子与载药粒子无显着差异,而后期,包被的药物经过载体资料的降解而缓慢继续释药,缓释纳米粒子的缓释效果得到显着表现,这也阐明纳米粒子开释规则根本恪守降解扩散控制准则[22-25]。但由于时刻要素,未能做在体内环境下,施行纳米微球与支架复合后的损害修正试验,有待进一步的研讨证明该微球的生物学含义和使用价值。

[参考文献]

[1]Seil JT,Webster TJ.Antimicrobial applications of nanotechnology:methods and literature[J].Int J Nanomedicine,2012,7:2767-2781.

[2]Tiwari M.Nano cancer therapy strategies[J].J Cancer Res Ther,2012,8(1):19-22.

[3]Kawagachi T,Tsugane A,Higashide K,et al.Control of drug release with a combination of prodrug and polymer matrix:antitumor activity and release profiles of 3′,5′-diacyl-5-fluoro-2′-deoxyurkline from poly (3-hydroxybutyrat e) microspheres[J].J Pharm Sci,1992,81(6):508-512.

[4]Liu Y,Tan J,Thomas A,et al.The shape of things to come: importance of design in nanotechnology for drug delivery[J].Ther Deliv,2012,3(2):181-194.

[5]Desai N.Challenges in development of nanoparticle-based therapeutics[J].AAPS J,2012,14(2):282-295.

[6]Pouton CW,Akhtar S.Biosynthetic polyhydroxyalkanoates and their potential in drug delivery[J].Adv Drug Deliv Rev,1996,18(2):133-162.

[7]Koosha F,Muller RH,Davis SS.Polyhydroxybutyrate as a drug carries[J].Crit Rev Ther Darrier Syst,1989,6(2):117-130.

[8]Bosetti M,Boccafoschi F,Leigheb M,et al.Chondrogenic induction of human mesenchyal stem cells using combined growth factors for cartilage tissue engineering[J].J Tissue Eng Regen Med,2012,6(3):205-213.

[9]de Koning GJM,Lemstra PJ.Crystallization phenomena in bacterial poly[(R) -3-hydroxybutyrate]:3.Toughening via texture changes[J].Polymer,1994,35(21):4598-4605.

[10]Li S,Ji Z,Zou M,et al.Preparation,characterization,pharmacokinetics and tissue distribution of solid lipidnanoparticles loaded with tetrandrine[J].AAPS Pharm Sci Tech,2011,12(3):1011-1018.

[11]Ozturk K,Caban S,Kozlu S,et al.The influence of technologicalparameters on the physicochemical properties of blank PLGAnanoparticles[J].Pharmazie,2010,65(9):665-669.

[12]Park YM,Lee SJ,Kim YS,et al.Nanoparticle-based vaccine delivery for cancer immunotherapy[J].Immune Netw,2013,13(5):177-183.

[13]Rolbblat G.Growth,nutrition,and metabolism of cell in culture[M].New York:Academic Publishers,1977.

[14]Manke A,Wang L,Rojanasakul Y.Mechanisms of nanoparticle-induced oxidative stress and toxicity[J].Biomed Res Int,2013,2013:942916.

[15]Li C,Li L,Keates AC.Targeting cancer gene therapy with magnetic nanoparticles[J].Oncotarget,2012,3(4):365-367.

[16]张纲.bFGF、rhBMP-2聚乳酸纳米微球促进下颌骨骨折愈合的试验研讨[D].重庆:第三军医大学,2007.

[17]陈璋,张婵,郭羽,等.羟基丁酸与羟基痛苦共聚物载阿霉素缓释纳米微球的研讨[J].山西大学学报(自然科学版),2009,32(2):258-262.

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基痛苦共聚体骨安排工程支架的开始研讨[J].功用资料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文修改:林利利)

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基痛苦共聚体骨安排工程支架的开始研讨[J].功用资料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文修改:林利利)

[18]郭羽,董岳峰,陈璋,等.羟基丁酸与羟基痛苦共聚体骨安排工程支架的开始研讨[J].功用资料,2009,40(3):459-462,466.

[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.

[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.

[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.

[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.

[23]Bañobre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.

[24]Cohen NP,Foster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.

[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.

(收稿日期:2014-04-04本文修改:林利利)

相关资讯
最新新闻
关闭