首页

胸苷激酶正常会有肿瘤

点击:0时间:2022-07-23 06:16:47

邓晓霖 厉周

[摘要] 肿瘤细胞的特征性代谢性办法是有氧性糖酵解,即Warburg效应。己糖激酶作为糖酵解的要害酶,在肿瘤细胞中广泛高表达,被以为与肿瘤代谢、凋亡和自噬严密相关。本文经过对己糖激酶及其上下流的研讨,能够找到潜在的能适用于多种肿瘤的基因靶向医治办法。

[要害词] 己糖激酶;Warburg效应;糖酵解;凋亡;自噬肿瘤

[中图分类号] R73-36 [文献标识码] A [文章编号] 1673-9701(2018)13-0164-05

Research progress of the effects of hexokinase on tumor

DENG Xiaolin LI Zhou

Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China

[Abstract] Objective The characteristic metabolic way of tumor cells is aerobic glycolysis, the Warburg effect. Hexokinase is the key enzyme of glycolysis and highly and widely expressed in tumor cells. It is considered to be related with metabolism, apoptosis and autophagy of tumor. By conducting researches on hexokinase and its upstream and downstream, it would be possible to find out the potential gene targeting therapy which could be effective to several kinds of tumors.

[Key words] Hexokinase; Warburg Effect; Glycolysis; Apoptosis; Autophagy; Tumor

腫瘤细胞具有快速增殖和反抗逝世的特色,为了满意本身需求,需求很多持续快速发作的能量,因而在含氧量足够的情况下仍优先进行能够快速产能的糖酵解,很多耗费葡萄糖发作乳酸,这一现象称为Warburg效应。Warburg效应已经成为肿瘤代谢的重要特征之一。己糖激酶是糖代谢进程的要害酶,催化糖酵解的第一个进程葡萄糖磷酸化成6-磷酸-葡萄糖。研讨证明,己糖激酶在多种类型的肿瘤当中高表达,既与Warburg效应有严密联络,又具有按捺细胞凋亡的效果,所以具有潜在的肿瘤发作开展、医治的研讨远景。

1 己糖激酶(Hexokinase,HK)的分类及效果

哺乳动物中发现有5种己糖激酶同工酶,HKⅠ、HKⅡ、HKⅢ、HKⅣ和HKDC1(Hexokinase domain containing 1)。HKⅠ首要散布在脑;HKⅡ首要散布在心肌、脂肪和骨骼;HKⅢ首要散布在骨髓、肺和脾;HKⅣ又称葡萄糖激酶,在胰内调控胰岛素排泄而在肝内则起调控葡萄糖吸取与糖原组成分化效果[1]。HKⅠ和HKⅡ均具有一段N端疏水的15个氨基酸序列,然后有与两性á-螺旋兼容的特质而且能够与线粒体外膜结合。HKⅢ和HKⅣ则没有这段序列,无法自行与线粒体外膜结合[2]。HKDC1是在第10号染色体上发现与HKⅠ基因相邻的人类己糖激酶样基因,HKⅠ和HKDC1基因首尾摆放,标明它们是串联基因仿制事情的产品。NCBI EST数据库的查找效果标明HKDC1因其序列猜测完好的917个氨基酸的敞开阅读框而被表达,被以为具有己糖激酶的功用。HKDC1相同具有疏水序列,能够与线粒体外膜结合[3]。

现在研讨遍及以为HKⅡ在肿瘤细胞中具有两层效果:一种是诱导糖酵解,细胞糖酵解水平与HKⅡ表达量及活性呈正相关;另一种是与电压依靠性阴离子通道(Volt-dependent anion channel,VDAC)在线粒体外膜结合按捺凋亡[4]。

HKⅡ除了代谢效果以外,跟着近年的研讨进展还被以为是一种维护性分子,心肌细胞在葡萄糖供给缺乏的情况下HKⅡ结兼并按捺雷帕霉素激酶机制效果方针(Mechanistic target of rapamycinkinase,mTORC)触发细胞自噬自我维护[5]。

2 己糖激酶的表达与活性调控

2.1肿瘤相关通路调控表达

磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基á/丝氨酸/苏氨酸激酶1/雷帕霉素激酶机制效果方针(Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit á/Serine/thereonine kinase 1/mechanistic target of rapamycin kinase,PI3K/Akt/mTORC)通路是重要的纽带性通路,能大范围激活下流多种类型的通路,因而能调理多种生物学行为包含糖代谢、细胞增殖、细胞凋亡等[1]。因而该通路对肿瘤的发作开展休戚相关。过度活泼的mTORC1足以添加HKⅡ表达而且一篇全面无偏倚的剖析陈述也支撑mTORC1介导HKⅡ表达上调的观念[6]。已经有很多研讨证明,HKⅡ表达与此通路的活性严密相关,HKⅡ能被PI3K/Akt通路激活,而按捺PI3K/Akt通路也能够按捺有氧性糖酵解而且能被外源性HKⅡ反转。例如,TRAF4经过按捺由Akt途径介导的GLUT1和HKⅡ的表达而削弱肺癌细胞葡萄糖代谢[7]。黄岑黄素在缺氧下提高胃癌AGS细胞对5-FU的敏理性。别的,黄岑黄素经过促进磷酸酶和张力蛋白同系物(Phosphatase and tensin homologue,PTEN)堆积按捺低氧诱导的Akt磷酸化,然后削减缺氧诱导型因子(Hypoxia inducible factor-1, HIF-1)的表达[8]。还有一种别离自真菌Albatrellusconfluens的抱负小分子化合物Neoalbaconol(NA),能够效果于3-磷酸肌醇依靠型蛋白激酶1(3-phosphoinositide-dependent protein kinase 1,PDK1),按捺其下流的PI3K/Akt-HKⅡ通路。经过效果于PDK1,NA削减了葡萄糖耗费和ATP生成,经由各自独立的通路激活了自噬和凋亡[9]。由此可见PI3K/Akt/mTORC通路与HKII的严密调控联络,因而能成为肿瘤代谢的研讨要点之一。

2.2 转录因子调控表达

HIF-1是一种转录因子,它的á亚单位在缺氧条件下变得安稳,进而激活转录程序以使细胞习惯缺氧的条件。HKⅡ启动子与HIF-1的首要结构共同且HKⅡ的表达能被缺氧加强,在缺氧时对细胞供给维护,这也是肿瘤细胞糖酵解水平高的机制之一。有关胰腺癌的研讨发现缄默沉静高流动性B组2型(High mobility group B2,HMGB2)基因下降了HIF-1蛋白水平,按捺了HIF-1á介导的糖酵解进程[10]。棘皮动物微管相关蛋白样4-间变性淋巴瘤激酶(Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase,EML4-ALK)在其mRNA转录活性和PI3K-AKT通路的联合效果下诱导非缺氧依靠但葡萄糖依靠的HIF-1á蛋白质的组成堆积[11]。

c-Myc和转录信号转导和激活因子3(Signal transducer and activator of transcription 3,STAT3)的组合也能调控HKⅡ的表达。c-Myc编码的蛋白质与相关的转录因子MAX构成异源二聚体,该复合物结合E盒DNA共有序列并调理特定靶基因的转录。STAT3在对细胞因子和成长因子的呼应中,STAT宗族成员被受体相关的激酶磷酸化,然后构成易位到细胞核的同源或异源二聚体,在那里它们起转录激活剂的效果。已有研讨发现转录因子c-Myc和STAT3参加白细胞介素22诱导的HKⅡ的表达上调[12],人参皂苷20(S)Rg3经过下调STAT3调理HKⅡ[13],新式喹诺酮-吲哚酮偶联物QIC1[9-氟-3,7-二氢-3-甲基-10-(4-甲基-1-哌嗪基)-6-(2-氧代-1,2 -二氢-吲哚-3-亚基甲基)-7-氧代-2H-(1,4)恶嗪并(2,3,4-ij)喹啉] 经过下流STAT3介导的HKⅡ信号通路削弱了表皮成长因子受体(Epithelial growth factor receptor,EGFR)的活性,因而按捺增殖并诱导细胞凋亡与磷酸-EGFR-磷酸化STAT3-HK2的表达下降有关[14]。

2.3 miRNA调控表达和活性

microRNAs(miRNA)是一类非编码小分子调控RNA,能够效果于靶基因的信使RNA(mRNA)使其降解来搅扰靶基因转录或翻译,然后完成对肿瘤细胞糖酵解的调控。研讨发现miR-4458在结肠癌细胞中下调,HKⅡ上调,一起miR-4458过表达能按捺有氧和缺氧条件下的增殖、糖酵解和乳酸发作。萤光素酶活性测定显现HKⅡ是miR-4458的直接靶标[15]。miR-181b经过直接效果于HKⅡ的3'非翻译区按捺其表达水平,负性调理胃癌的糖酵解水平[16]。前列腺癌中miR-143的效果方针是HKⅡ,按捺了细胞增殖[17,18],miR-199a-5p对肝癌细胞的代谢进程进行从头编程[19]。

3己糖激酶对肿瘤细胞线粒体的效果

3.1促进糖酵解

HKⅡ能够与镶嵌在线粒体外膜上的VDAC结合,以促进ATP对HKⅡ的糖酵解的优先进入,坚持稳定的肿瘤细胞增殖能量来历。分子动力学模仿效果显现HKⅡ的结合约束了VDAC1 N-结尾螺旋的移动。因而,VDAC1大部分时刻坚持在敞开状况,且或许保证了对HKⅡ的糖酵解稳定的ATP供给[20]。

3.2按捺凋亡

依据很多的研讨效果,已知HKⅠ和HKⅡ均能与VDAC直接结合,并按捺细胞色素c开释然后按捺线粒体介导的细胞凋亡,但分子机制尚不清晰。一个模型提出,VDAC1是由促凋亡影响激活的浸透转化孔(Permeability transition pores,PTP)的組成部分[21]。另一个模型提出Bax与VDAC1相互效果,导致细胞色素c经过线粒体外膜浸透[22]。第三个模型提出,封闭VDAC1通道可阻挠细胞质和线粒体基质之间的ATP和ADP的有用交流,然后线粒体外膜肿胀决裂。参照这个模型,Azouley-Zohar[23]证明HKⅠ和HKⅡ能有用结合VDAC,对线粒体外膜进行重构而改动其通透性使通道坚持封闭状况。最新的模型提出VDAC1寡聚化作为介导促凋亡蛋白的开释[24]。

4 肿瘤的医治

4.1 促进线粒体结合的HK(mitochondrial-HK,m-HK)解离

因为肿瘤细胞中HK-VDAC结合遍及升高而按捺了细胞凋亡,因而运用化合物促进HK从VDAC解离能起到促进凋亡然后医治肿瘤的效果。类黄酮FV-429触发细胞凋亡,一起按捺乳腺癌MDA-MB-231细胞的糖酵解。FV-429显着下降了HK II活性及其在线粒体中的数量,而且削弱了HKⅡ与VDAC之间的相互效果,影响了HKⅡ从线粒体中别离,导致线粒体PTP敞开促凋亡[25]。运用白杨素医治后,线粒体上的HKⅡ与VDAC1结合体显着削减,构成Bax从胞浆搬运至线粒体并引发细胞凋亡[26]。在HeLa细胞中,pHK-PAS使线粒体膜电位去极化,按捺线粒体呼吸和糖酵解,并削减了胞内ATP水平。这些效应与内源性全片段HKⅡ从线粒体脱离和细胞色素c开释有关[27]。神经母细胞瘤细胞中的下流调控元件拮抗调理剂(Downstream regulatory element antagonist modulator,DREAM)过表达削减了HKⅠ在别离的线粒体上的定位。DREAM与HKⅠ的相互效果或许在调理神经元凋亡中起重要效果[28]。归纳以上依据,促进m-HK与线粒体解离是经过HK医治肿瘤的重要手法。

4.2 按捺糖酵解

依据已有的研讨效果,按捺HK的表达和活性能够到达按捺糖酵解的意图。2-DG竞争性按捺HKⅡ来按捺肿瘤相关巨噬细胞的糖酵解,足以阻挠其搬运前表型的构成,然后反转胰腺胆管癌肿瘤相关巨噬细胞支撑的血管构成、溢出添加和EMT(Epithelial-to-mesenchymal transition)[29]。三阴乳腺癌细胞中4-羟基他莫昔芬(4-OHT)促进SLUG基因表达,被姜黄素阻断,进一步的研讨显现SLUG经过结合HKⅡ启动子激活HKⅡ的转录[21]。ErbB2经过添加HKⅡ与线粒体外膜的结合来上调HKⅡ的活性,葡萄糖代谢失调诱导了ErbB2高表达的乳腺癌细胞对葡萄糖饥饿和糖酵解按捺的易理性[30]。此外,为了研讨效果于由BRCA1缺失诱导的代谢表型的医治办法,有人采用了旧药新用的办法,并确定阿司匹林为抵消HKⅡ添加和由BRCA1损害诱导的糖酵解添加的药剂[31]。还有研讨发现,姜黄素一方面临HCT116和HT29细胞中HKⅡ的表达和活性具有浓度依靠性的下调,但对其他要害糖酵解酶(PFK,PGM,LDH)影响不大;另一方面,姜黄素诱导HKⅡ从线粒体解离,引起线粒体介导的细胞凋亡。姜黄素还经过Akt磷酸化线粒体HKⅡ担任诱导的HKⅡ解离[32]。除此以外,上述调控HK的转录因子和miRNA也成为肿瘤医治的研讨热门。

4.3 調控细胞自噬

自噬是一种天然且具有破坏性的机制,细胞经过这种机制降解并收回不必要或功用失调的成分。在应激或养分被掠夺的条件下,自噬往往被激活以坚持代谢稳态和细胞存活。自噬被以为在肿瘤发作中起承上启下的两层效果:能经过阻挠致癌转化来按捺肿瘤的发作;相反在已发作的肿瘤中,自噬在不利于肿瘤的微环境中可被用于延伸癌细胞的存活期[33]。研讨发现肝癌中自噬与糖酵解水平呈负相关,证明HKⅡ作为选择性自噬的底物,被TRAF6和SQSTM1介导的泛素化体系辨认并诱导自噬调理糖酵解[34]。药理研讨证明HKⅡ的按捺剂2-DG(2-deoxy-D-glucose)经过诱导细胞凋亡和自噬来按捺人和小鼠肺癌细胞的成长,HKⅡ是Kras被激活且p53功用丢失的非小细胞肺癌的潜在医治靶点[35]。自噬也被以为在癌细胞对放射和化学疗法的耐药性中起要害效果。在乳腺癌MDA-MB-435和MDA-MB-231细胞中,HKⅡ的按捺剂3-羟基丙酮酸(3-Bromopyruvic,3-BrPA)引发自噬,氯喹经过影响ROS构成增强3-BrPA诱导的细胞逝世,添加用3-BrPA处理的细胞抗癌功效。因而,按捺自噬或许是乳腺癌辅佐化疗的立异战略[36]。以上依据显现,HK在细胞自噬的效果成为了肿瘤医治的新方向。

4.4 放射医治

三种细胞系乳腺癌MCF-7、结肠癌HCT116和胶质细胞瘤U87在单次5 Gy放疗后表现出mTOR快速重定坐落线粒体,伴跟着乳酸发作下降、线粒体ATP组成升高和耗氧量升高。运用雷帕霉素按捺mTOR能阻断上述放射诱导的mTOR重定位及其效应,下降存活率。在被放射后的细胞里,mTOR与HKⅡ构成复合体,下降了HKⅡ的酶活性,此可逆的细胞能量代谢应可被用于添加肿瘤细胞对抗癌医治的敏感度[37]。

5 总结与展望

己糖激酶与肿瘤发作开展联络严密,包含广泛的肿瘤类型,其对肿瘤影响的研讨已经有了开始的效果。研讨效果标明,能够针对肿瘤的不同基因型定制不同的医治靶点,运用包含miRNA和化学物质来直接按捺己糖激酶或按捺其相关的信号通路,然后到达按捺肿瘤成长、增殖,调控肿瘤自噬凋亡的意图,供给了处理肿瘤尤其是耐药肿瘤的靶向医治思路,可是己糖激酶效果的详细分子机制没有清楚说明,大多只是在基因表达和活性水平层面上调控己糖激酶,所以未来己糖激酶的研讨能够持续向分子机制方面深化。

[参考文献]

[1] Roberts DJ,Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection:Akting on mitochondria and TORCing to autophagy[J]. Cell Death Differ,2015,22(2):248-257.

[2] Mathupala SP,Ko YH,Pedersen PL. Hexokinase II:cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria[J]. Oncogene,2006,25(34):4777-4786.

[3] Irwin DM,Tan H. Molecular evolution of the vertebrate hexokinase gene family:Identification of a conserved fifth vertebrate hexokinase gene[J]. Comp Biochem Physiol Part D Genomics Proteomics,2008,3(1):96-107.

[4] Shoshan-Barmatz V,Mizrachi D. VDAC1:from structure to cancer therapy[J]. Front Oncol,2012,2:164.

[5] Tan VP,Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection[J]. Autophagy,2015,11(6):963-964.

[6] Robey,R. B. and N. Hay. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis[J]. Semin Cancer Biol,2009,19(1):25-31.

[7] Li W,Peng C,Lee MH,et al. TRAF4 is a critical molecule for Akt activation in lung cancer[J]. Cancer Res,2013,73(23):6938-6950.

[8] Chen F,Zhuang M,Zhong C,et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1alpha signaling pathway[J]. Oncol Rep,2015,33(1):457-463.

[9] Deng Q,Yu X,Xiao L,et al. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway[J]. Cell Death Dis,2013,4:e804.

[10] Cai X,Ding H,Liu Y,et al. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer[J]. Acta Biochim Biophys Sin(Shanghai),2017,49(2):119-127.

[11] Ma Y,Yu C,Mohamed EM,et al. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer[J]. Oncogene,2016,35(47):6132-6142.

[12] Liu Y,Xiang F,Huang Y,et al. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells[J]. Oncotarget,2017,8(15):25372-25383.

[13] Li J,Liu T,Zhao L,et al. Ginsenoside 20(S)Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J]. Int J Oncol,2015,46(2):775-781.

[14] Liu YH,Wei XL,Hu GQ,et al. Quinolone-indolone conjugate induces apoptosis by inhibiting the EGFR-STAT3-HK2 pathway in human cancer cells[J]. Mol Med Rep,2015,12(2):2749-2756.

[15] Li LQ,Yang Y,Chen H,et al. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene[J].Cancer Biomark,2016,17(1):75-81.

[16] Qin,Cheng YC,Lu H,et al. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells[J]. Biochem Biophys Res Commun,2016,469(1):37-43.

[17] Zhou P,Chen WG ,Li XW. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer[J]. Am J Cancer Res,2015,5(6):2056-2063.

[18] Peschiaroli A,Giacobbe A,Formosa A,et al. miR-143 regulates hexokinase 2 expression in cancer cells[J]. Oncogene,2013,32(6):797-802.

[19] Guo W,Qiu Z,Wang Z,et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology,2015,62(4):1132-1144.

[20] Zhang D,Yip YM,Li L. In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1[J]. Mitochondrion,2016,30:222-228.

[21] Geng CJ,Li F,Ding,et al. Curcumin suppresses 4-hydroxytamoxifen resistance in breast cancer cells by targeting SLUG/Hexokinase 2 pathway[J]. Biochem Biophys Res Commun,2016,473(1):147-153.

[22] Tsujimoto Y,Shimizu S. Role of the mitochondrial membrane permeability transition in cell death[J]. Apoptosis,2007,12(5):835-840.

[23] Azoulay-Zohar H,Israelson A,Abu-Hamad S,et al. In self-defence:hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death[J]. Biochem J,2004,377(Pt 2):347-355.

[24] Shimizu S,Konishi A,Kodama T,et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death[J]. Proc Natl Acad Sci USA,2000,97(7):3100-3105.

[25] Zhou Y,Lu N,Qiao C,et al. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells[J]. Mol Carcinog, 2016, 55(9):1317-1328.

[26] Xu D,Jin J,Yu H,et al. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2[J]. J Exp Clin Cancer Res,2017, 36(1):44.

[27] Woldetsadik AD,Vogel MC,Rabeh WM,et al. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells[J]. FASEB J,2017,31(5):2168-2184.

[28] Craig TA,Ramachandran PL,Bergen HR,et al. The regulation of apoptosis by the downstream regulatory element antagonist modulator/potassium channel interacting protein 3(DREAM/KChIP3) through interactions with hexokinase I[J]. Biochem Biophys Res Commun,2013,433(4):508-512.

[29] Penny HL,Sieow JL,Adriani G,et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma[J]. Oncoimmunology,2016,5(8):e1191731.

[30] Gao S,Chen X,Jin H,et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane[J]. Oncol Lett,2016,11(2):1567-1573.

[31] Chiyoda T, Hart PC,Eckert MA,et al. Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis:A window of opportunity for ovarian cancer chemoprevention[J]. Cancer Prev Res (Phila),2017,10(4):255-266.

[32] Wang K,Fan H,Chen Q,et al. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase Ⅱ in human colorectal cancer cells in vitro[J]. Anticancer Drugs,2015,26(1):15-24.

[33] Mizushima N,Komatsu M. Autophagy:Renovation of cells and tissues[J]. Cell,2011,147(4):728-741.

[34] Jiao L,Zhang HL,Li DD,et al. Regulation of Glycolytic Metabolism by Autophagy in Liver Cancer Involves Selective Autophagic Degradation of HK2(hexokinase 2)[J].Autophagy,2018,14:28.

[35] Wang H,Wang L,Zhang Y,et al. Inhibition of glycolytic enzyme hexokinase II(HK2) suppresses lung tumor growth[J]. Cancer Cell Int,2016,16(38):9.

[36] Zhang Q,Zhang Y,Zhang P,et al. Hexokinase II inhibitor,3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells[J]. Genes Cancer,2014,5(3-4):100-112.

[37] Lu,CL,Qin L,Liu HC,et al. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase Ⅱ inhibition-a Warburg-reversing effect[J]. PLo S One,2015,10(3):e0121046.

(收稿日期:2018-01-28)

相关资讯
最新新闻
关闭