首页

麦角甾苷 麦角甾酮的药理活性、药代动力学及含量测定研究进展

点击:0时间:2021-09-07 21:57:41

陈晗+陈丹倩+李全福+李鹏飞+陈华+赵英永

[摘要]麦角甾酮是多种药用真菌的首要化学成分之一,具有利尿、抗肿瘤、免疫按捺、医治缓慢肾脏病等多种生物活性。根据已报导的相关文献,该文总述了麦角甾酮的波谱特征、含量测定、药理活性及药代动力学等研讨进展,为深化研讨与开发利用麦角甾酮供应必定价值的参阅。

[关键词]麦角甾酮;利尿;缓慢肾脏病;细胞毒活性;药代动力学;含量测定

麦角甾-4,6,8(14),22-四烯-3-酮[麦角甾酮,ergosta-4,6,8(14),22-tetraen-3-one,ergone,结构式见图1]归于甾体类化合物,广泛散布于冬虫夏草Cordyceps sinensis (Berk) Sacc.[1],猪苓Polyporus umbellatus (Pers.) Fries[2-3],Vietnamese Xylaria sp.[4],黄心柿Diospyros maritima Blume[5],Zopfiella longicaudata (Cain) Arx[6],Pleurotus ostreatus (Jacq. ex Fr.) Kumm[7]等多种真菌和地衣。麦角甾酮有利尿、抗肿瘤、免疫按捺和医治缓慢肾脏病等多种生物活性[1-9]。本文通过检索Web of Science,Pubmed,ScienceDirect,Springer,Google Scholar,我国知网等数据库,查到国内外相关麦角甾酮的文献,现将近几十年麦角甾酮的药理活性、药代动力学、波谱特征及含量测定办法等方面的研讨进展进行总结,为深化研讨和开发利用麦角甾酮供应科学依据。

1 麦角甾酮的结构表征

麦角甾酮为淡黄色晶体(石油醚),C28H40O,相对分子质量392;mp 113~115 ℃;氢谱与碳谱数据如下:1H NMR(CDCl3,500 MHz) 5.73(1H,s,H-4),6.03(1H,d,J=9.5 Hz,H-6),6.61(1H,d,J=9.5 Hz,H-7),0.96(3H,s,H-18),1.00(3H,s,H-19),1.06(3H,d,J=6.7 Hz,H-21),5.20(1H,dd,J=15.3,7.3 Hz,H-22),5.46(1H,dd,J=15.3,7.3 Hz,H-23),0.83(3H,d,J=6.7 Hz,H-26),0.85(3H,d,J=7.0 Hz,H-27),0.93(3H,d,J=7.0 Hz,H-28);13C-NMR(CDCl3,125 MHz):34.3(C-1),34.4(C-2),199.4(C-3),123.3(C-4),164.4(C-5),124.7(C-6),134.1(C-7),124.7(C-8),44.7(C-9),37.0(C-10),19.2(C-11),35.9(C-12),44.2(C-13),156.1(C-14),25.6(C-15),27.8(C-16),56.0(C-17),19.2(C-18),16.8(C-19),39.4(C-20),21.4(C-21),135.2(C-22),132.8(C-23),43.1(C-24),33.3(C-25),19.8(C-26),20.1(C-27),17.8(C-28)。

2 麦角甾酮的药理活性

2.1 利尿效果 Yuan等报导麦角甾酮给药组与未给药组正常大鼠之间的尿量及Na+/K+分泌量比值无显着差异,而去除肾上腺及给予deoxycoricosterone acetate(DOCA)大鼠尿量及Na/K分泌量比有显着差异;对去除肾上腺及未给予DOCA大鼠尿量及Na/K分泌量比无显着差异[10]。有文献报导5,10,20 mg·kg-13个不同剂量的麦角甾酮对正常大鼠均有添加排尿量的趋势,3个剂量组与给水对照组比较,大鼠尿量别离添加了33.4%,32.5%,46.8%。添加的尿量均超越30%,这提示麦角甾酮有较好的利尿效果。Na+,K+及Cl-排出量效果标明,麦角甾酮在添加尿量的一起,也可添加电解质Na+,K+及Cl-的排出,5,10 mg·kg-1剂量的麦角甾酮均能够添加尿液中Na+,K+及Cl-的排出量,但二者无显着差异;20 mg·kg-1剂量麦角甾酮能够显着添加尿液中Na+,K+及Cl-的排出量,且Na+,K+及Cl-的排出量别离添加了30%,42%,27%,而Na+/K+的比值根本不变。现在,麦角甾酮的利尿效果机制没有彻底清晰,或许由于其按捺了肾小管对电解质和水的重吸收[11-12],也或许通过拮抗醛固酮使Na+-K+平衡发作改动[10]

2.2 医治缓慢肾脏病效果 腺嘌呤是致动物缓慢肾衰的常用药物,进入体内后通过黄嘌呤氧化酶的效果转变为不溶于水的2,8-二羟基腺瞟呤,然后影响氮质化合物的分泌和电解质Na+,K+,Ca2+,P-等物质的代谢,引起肾小管功用减退乃至损失,终究导致肾衰竭。研讨显现,麦角甾酮能够添加腺嘌呤诱导的缓慢肾衰竭模型血红蛋白含量,下降血清肌酐和血尿素氮,下调I,III型胶原蛋白及TGF-β1在肾安排的表达,并在改进肾功用、削减腺嘌呤代谢产品对肾脏的病理性危害方面具有较好效果。UPLC-MS代谢组学的研讨效果显现麦角甾酮对腺嘌呤所形成的的大鼠缓慢肾衰竭有较好的防治效果[13]。血清代谢组学的试验效果显现磷脂(16∶0/18∶2)、溶血卵磷脂(18∶1)、溶血卵磷脂(17∶0)、溶血卵磷脂(16∶0)、二氢神经鞘氨醇、植物鞘氨醇、色氨酸、肌酐、神经酰胺(18∶0/16∶0)、神经酰胺(18∶0/14∶0)等是腺嘌呤诱导的缓慢肾衰竭大鼠血清的生物标明物,腺嘌呤提高了尿液中植物鞘氨醇、肾上腺甾酮、色氨酸、2,8-二羟基腺嘌呤、肌酐和二氢神经鞘氨醇的水平,一起下降了尿液中N-乙酰亮氨酸、3-氧-甲基多巴、乙基-N2-乙酰-L-精氨酸盐、多巴胺、苯丙氨酸、犬尿酸的水平,麦角甾酮对这些生物标明物有必定的反转效果[14]。别的,肌酐、脯氨酸、肾上腺甾酮、牛磺酸、肌酸、苯丙氨酸、多巴胺、犬尿酸等也是缓慢肾衰竭大鼠尿液生物标明物,麦角甾酮对这些生物标明物也有必定的反转效果[15]。这些效果标明缓慢肾衰竭的开展进程受磷脂、 氨基酸等多个代谢途径影响,麦角甾酮可通过改进相关内源性物质的代谢对缓慢肾衰竭发挥医治效果。此外,根据UPLC-MS的粪便代谢组学研讨效果显现鹅去氧胆酸,棕榈酸,植物鞘氨醇,MG(24∶1/0∶0/0∶0),12-hydroxy-3-oxocholadienic acid,lysoPE(18∶2/0∶0),lysoPE(16∶0/0∶0)及7-ketolithocholic acid是缓慢肾衰竭大鼠的粪便的生物标明物,麦角甾酮对这些生物标明物有必定的反转效果[16-17]。endprint

麦角甾酮对马兜铃酸诱导的缓慢马兜铃酸肾病亦有较好的医治效果。试验研讨标明麦角甾酮对马兜铃酸引起的肌酐、尿素氮、尿蛋白及N-acetyl-b-D-glucosaminidase水平的上升有不同程度按捺效果,然后改进肾间质的纤维化[18]

2.3 细胞毒活性及抗肿瘤活性 很多研讨已证明麦角甾酮具有必定的细胞毒性,而且进一步的药理及代谢组学研讨标明,麦角甾酮在体内有抗肿瘤的生物活性。

Lee等报导麦角甾酮对人肝癌细胞Hep3B、结肠癌细胞HT-29、子宫颈癌细胞HeLa29和人胃癌细胞AGS按捺的IC50别离为5,7.2,26.3,22 mg·L-1[19]。效果显现麦角甾酮对Hep3B和AGS细胞的增殖有较强的按捺效果。

赵英永等选用活性导向挑选猪苓细胞毒活性成分,研讨显现猪苓中的麦角甾酮对人肝癌细胞HepG2、人喉癌细胞Hep-2、人子宫颈癌细胞Hela及正常细胞人脐静脉细胞HUVEC的增殖有必定的按捺效果,麦角甾酮对HepG2,Hep-2,Hela及HUVEC增殖按捺的IC50别离为10.5,14.6,10.8,25.0 mg·L-1[20]。麦角甾酮对HepG2,Hep-2,Hela增殖按捺效果强于对正常HUVEC细胞,阐明其对癌细胞有较强的挑选性。Tala等的研讨效果也证明麦角甾酮对Hela增殖有必定的按捺效应[21]。赵英永等进一步研讨了麦角甾酮诱导HepG2凋亡的效果机制,效果显现麦角甾酮对HepG2细胞的按捺效果呈显着浓度和时刻依靠性;麦角甾酮对HepG2细胞周期的改动呈浓度依靠性散布;Annexin V-FITC/PI双染法调查不同浓度麦角甾酮对HepG2细胞凋亡的影响,前期凋亡率别离为1.2%,6.3%,10.5%,21%,晚期凋亡率则别离为 4.5%,7.8%,16.2%,29.9%;Hoechst 33258荧光染色法检测效果显现细胞核舒展、荧光变得细密等细胞凋亡的典型形态学特征。Western blotting效果还显现麦角甾酮在上调Bax及cleaved PARP的一起下调Bcl-2,procaspase-3,-8,-9,PARP及p-53。这些凋亡途径显现了麦角甾酮诱导人肝癌细胞HepG2凋亡及G2/M细胞周期阻滞的效果机制[22]。此外,Froufe等报导麦角甾酮对立凋亡蛋白Bcl-2有按捺效果[23]。研讨卷柏中别离的麦角甾酮及其类似物的结构与细胞毒活性的联系,发现麦角甾酮的抗肿瘤活性或许与其3位氧有关[24]

Kuo等对黄心柿中别离得到的麦角甾酮进行体外细胞毒性点评,发现其对肝癌 HEPA-3B、鼻咽癌KB、结肠癌 COLO-205和宫颈癌 HELA细胞显现出强的细胞毒效果[5]

其他研讨显现麦角甾酮-PEG脂质体比游离麦角甾酮在固体荷瘤小鼠有更显着的抗肿瘤活性[25]。Sun等报导叶酸润饰麦角甾酮的牛血清白蛋白的纳米颗粒能够改进麦角甾酮的医治效果。体外试验研讨证明了缓释的纳米粒子在血液循环过程中添加药物的靶点开释。证明叶酸润饰麦角甾酮的细胞吸取增强。体内试验也证明能够发生强壮的活动对叶酸润饰阳性肿瘤[26-27]

Lentinus polychrous菌丝体别离得到的麦角甾酮对人乳腺癌T47D细胞雌激素活性和抗雌激素活性的测定效果显现,麦角甾酮无雌激素活性,但对雌二醇增强的T47D细胞增殖有按捺效应,阐明麦角甾酮可高挑选性地竞赛雌激素受体[28]

2.4 麦角甾酮的免疫按捺活性 Fujimoto等从真菌Zopfiella longicaudata别离判定的麦角甾酮对伴刀豆球蛋白A 或脂多糖诱导小鼠脾淋巴细胞增殖显现了强的免疫按捺活性[6]。剖析其构效联系后发现麦角甾酮分子结构中的A,B,C 3个环或许对免疫按捺活性起着重要的效果。

2.5 麦角甾酮按捺黑色素发生效应 Hong等从桑黄的子实体别离得到麦角甾酮能够下降小鼠黑色素瘤细胞B16F10内激活的α-促黑素细胞激素,且在5~15 μmol·L-1出现剂量依靠联系;在B16F10细胞内麦角甾酮也以剂量依靠办法按捺酪氨酸酶蛋白的表达和mRNA的水平[29]。Leon等从褐环乳牛肝菌别离到麦角甾酮并点评麦角甾酮对人黑色素瘤细胞SK-MEL-1的细胞毒活性,测定麦角甾酮处理后72 h的IC50为10 μmol·L-1[30]

2.6 麦角甾酮按捺超氧阴离子发生、弹性蛋白酶开释、植物成长效应 Thang等从无柄紫灵芝别离出麦角甾酮并测定其对超氧阴离子发生和弹性蛋白酶开释的按捺效应,效果显现麦角甾酮对超氧阴离子发生和弹性蛋白酶开释有较强的按捺效应,其按捺的IC50别离为(2.30±0.38),(1.94±0.50) g·mL-1[31]。Macías等挑选Guanomyces polythrix植物毒素成分,别离得到的麦角甾酮对千穗谷和稗草成长有强的按捺活性,按捺成长活性的IC50别离为8.0×10-5,1.7×10-4mol·L-1[32]。Mata等研讨从真菌Guanomyces polytrix别离的植物毒素,发现钙存在时麦角甾酮按捺钙调蛋白依靠烟酰胺腺嘌呤二核苷酸激酶和钙调蛋白依靠环核苷酸磷酸二酯酶的活性[33]。endprint

3 麦角甾酮的药代动力学

根据麦角甾酮体内药理学的研讨根底,文献报导了选用高效液相色谱-紫外检测器联用(HPLC-UV)、高效液相色谱-荧光检测器联用(HPLC-FLD)、高效液相色谱-质谱仪联用(HPLC-MS)、RRLC-MSn和等测定办法研讨了麦角甾酮及其代谢产品在血浆、大便、尿液和安排等散布及分泌。

3.1 血浆药代动力学 给大鼠灌胃剂量为20 mg·kg-1的麦角甾酮后,3.81 h到达最大血药浓度1.29 mg·L-1[34-35]。报导显现,麦角甾酮结合人血清白蛋白关于麦角甾酮的药代动力学有重要的影响,构象研讨标明麦角甾酮的存在下降了人血清白蛋白中α螺旋的含量并诱导蛋白质多肽细微的打开[36-37]。麦角甾酮能够结合到人血清白蛋白的位点,与分子建模的效果共同。

3.2 安排散布 赵英永等研讨麦角甾酮在肺、脾、肝、肠、肾、心脏、胃、附睾、脑安排的安排散布,给药后9 h麦角甾酮在不同安排的散布到达最大浓度,12 h后麦角甾酮在不同安排浓度显着的下降。麦角甾酮在肺、脾和肝浓度较高,麦角甾酮在安排的散布与血流量有关。安排麦角甾酮AUC降序为肺、脾、肝、血浆、肠道、肾脏、心脏、胃、附睾、脑。麦角甾酮则首要散布在血液供应丰厚的安排如肺、脾、肝、肾,标明麦角甾酮散布是依靠于血液活动或器官的灌注率。别的口服麦角甾酮后24 h麦角甾酮在胆汁分泌率为34.14%[38]

3.3 尿液及粪便的分泌 选用树立的HPLC-FLD办法测定麦角甾酮在血浆、大便及尿液中的含量,效果发现麦角甾酮在血浆及大便含量高,特别是在大便中的含量较高,24 h内麦角甾酮给药量约57%通过大便排出体外,6~8 h时到达最大排出量,而麦角甾酮在尿液中的含量低于检测限,这一效果显现麦角甾酮是在胆汁中经大便排出。代谢产品epoxyergone仅仅在大便能够被检测到,而在血浆和尿液没有检测到代谢产品。在24 h内有1%的麦角甾酮转化为代谢产品,在8~10 h到达最大排出量,和麦角甾酮比较,代谢产品的排出迟于麦角甾酮2 h[39]。效果标明麦角甾酮的分泌途径是通过大便分泌而不是尿液(药物经尿分泌或许形成肾损害)。Sun等树立荧光剖析办法测定麦角甾酮在血浆、大便及尿液中的含量,该办法能快速定量测定大鼠血浆,粪便和尿液中麦角甾酮含量[40]

4 麦角甾酮的含量测定研讨

到现在为止,文献报导了HPLC-UV,HPLC-FLD,HPLC-MS等测定不同中药中麦角甾酮的办法,但由于麦角甾酮含量极低,HPLC-UV办法无法精确测定麦角甾酮的含量。由于麦角甾酮有较强的荧光强度,HPLC-FLD是测定麦角甾酮的抱负办法,文献报导了HPLC-FLD测定猪苓中麦角甾酮的测定办法,一起与HPLC-UV办法进行了比较[41-43]。由于荧光检测技能具有高的灵敏度和挑选性,杂乱的物质系统(如中药提取物)中的微量成分能被直接的测定,因而使用HPLC-FLD办法对猪苓药材中的麦角甾酮进行含量测定。

赵英永等树立HPLC-MS办法测定猪苓中包含麦角甾酮在内的8个甾体类化合物的含量[44]。比较传统的HPLC-UV和HPLC-ELSD测定办法,HPLC-MS对低含量成分的测定显现出杰出的挑选性和高灵敏度,该办法可用于定量剖析麦角甾酮。孙洋等研讨麦角甾酮与人血清白蛋白和牛血清白蛋白的相互效果,吸收光谱和荧光光谱研讨标明麦角甾酮与血清白蛋白结合导致蓝移与显着的强度改变[45]

麦角甾酮是雷丸药材的首要成分之一,胡珊梅等树立了紫外-可见分光光度法测定雷丸中麦角甾酮含量的办法[46]。此办法操作简洁,重复性好,效果精确牢靠,可用于雷丸的定性定量剖析,以操控雷丸药材及相关产品的质量。

5 展望

近几年,药用真菌的研讨越来越受到重视,特别广泛散布于多种药用真菌的麦角甾酮招引了研讨者们更多的重视。研讨已证明麦角甾酮有利尿、医治缓慢肾脏病、抗癌、抗肿瘤、免疫按捺等多种生物活性。根据药理学、代谢组学、细胞生物学的研讨办法,从全体动物到细胞分子水平,麦角甾酮医治缓慢肾病和细胞毒活性及其机制研讨现已取得了一些效果。麦角甾酮可通过诱导多种肿瘤细胞凋亡和按捺肿瘤搬运起到抗肿瘤效果。但现在的研讨大多局限于细胞水平,对麦角甾酮在全体水平的抗肿瘤效果及其机制还有待愈加深化地研讨。麦角甾酮抗肿瘤方面的进一步研讨能够使麦角甾酮有望成为一种广谱抗癌新药。

缓慢肾脏病是要挟人类健康的重要疾病之一,相关研讨效果已标明麦角甾酮对缓慢肾脏病有较好的医治效果。药代动力学的效果证明麦角甾酮是通过粪便分泌而不通过尿液分泌,能够防止长期使用麦角甾酮而形成肾损害。药理和代谢组学的效果证明麦角甾酮对缓慢肾脏病的医治显现了杰出的效果。尽管试验研讨显现麦角甾酮在防治缓慢肾脏病上有宽广的使用远景,但现有的研讨大部分还仅局限于体外细胞试验和动物模型研讨,而没有有麦角甾酮临床研讨效果的报导。因而,对麦角甾酮进一步深化开展临床研讨是十分必要的,这能够为医治缓慢肾脏病药物的挑选和开发供应新的参阅,进而为麦角甾酮及真菌类中药的使用供应宽广的远景。

[参阅文献]

[1] Bok J W,Lermer L,Chilton J,et al. Antitumor sterols from the mycelia of Cordyceps sinensis [J]. Phytochemistry,1999,51(7):891.

[2] Zhao Y Y. Traditional uses,phytochemistry,pharmacology,pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries:a review [J]. J Ethnopharmacol,2013,149(1):35.endprint

[3] Zhao Y Y,Yang L,Wang M,et al. 1β-hydroxylfriedelin,a new natural pentacylic triterpene from the sclerotia of Polyporus umbellatus [J]. J Chem Res,2009,11(11):699.

[4] Quang D N,Bach D D. Ergosta-4,6,8(14),22-tetraen-3-one from Vietnamese Xylaria sp. possessing inhibitory activity of nitric oxide production [J]. Nat Prod Res,2008,22(10):901.

[5] Kuo Y H,Chang C I,Li S Y,et al. Cytotoxic constituents from the stems of Diospyros maritima [J]. Planta Med,1997,63(4):363.

[6] Fujimoto H,Nakamura E,Okuyama E,et al. Six immunosuppressive features from an ascomycete,Zopfiella longicaudata,found in a screening study monitored by immunomodulatory activity [J]. Chem Pharm Bull,2004,52(8):1005.

[7] Chobot V,Opletal L,Jahodar L,et al. Ergosta-4,6,8,22-tetraen-3-one from the edible fungus,Pleurotus ostreatus (oyster fungus) [J]. Phytochemistry,1997,45(8):1669.

[8] Kovganko N V. Ecdysteroids and related compounds in fungi [J]. Chem Nat Compd,1999,35(6):597.

[9] Price M J,Worth G K. The occurrence of ergosta-4,6,8(14),22-tetraen-3-one in several fungi [J]. Aust J Chem,1974,27:2505.

[10] Yuan D,Mori J,Komatsu K I,et al. An anti-aldosteronic diuretic component (drain dampness) in Polyporus Sclerotium [J]. Biol Pharm Bull,2004,27(6):867.

[11] Moyer J H,Morton F. Edema mechanism and management[M]. London:WB Saunders Company,1960:173.

[12] Pitts R F,Sartorius O W. Mechanism of action and therapeutic use of diuretics [J]. Pharmacol Rev,1950,2(1):161.

[13] Zhao Y Y. Metabolomics in chronic kidney disease [J]. Clin Chim Acta,2013,422:59.

[14] Zhao Y Y,Cheng X L,Cui J H,et al. Effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone) on adenine-induced chronic renal failure rat:a serum metabonomic study based on ultra performance liquid chromatography/high-sensitivity mass spectrometry coupled with MassLynx i-FIT algorithm [J]. Clin Chim Acta,2012,413(19/20):1438.

[15] Zhao Y Y,Shen X,Cheng X L,et al. Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique [J]. Process Biochem,2012,47(12):1980.

[16] Zhao Y Y,Cheng X L,Wei F,et al. Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique [J]. Biomarkers,2012,17(8):721.endprint

[17] Zhao Y Y,Zhang L,Long F Y,et al. UPLC-Q-TOF/HSMS/MSE-based metabonomics for adenine-induced changes in metabolic profiles of rat faeces and intervention effects of ergosta-4,6,8(14),22-tetraen-3-one [J]. Chem-Biol Inter,2013,301(1/3):31.

[18] Zhao Y Y,Zhang L,Mao J R,et al. Ergosta-4,6,8(14),22-tetraen-3-one isolated from Polyporus umbellatus prevents early renal injury in aristolochic acid-induced nephropathy rats [J]. J Pharm Pharmacol,2011,63(12):1581.

[19] Lee W Y,Park Y,Ahn J K,et al. Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus [J]. Bull Korean Chem Soc,2005,26 (9):1464.

[20] Zhao Y Y,Chao X,Zhang Y,et al. Cytotoxic steroids from Polyporus umbellatus [J]. Planta Med,2010,76(15):1755.

[21] Tala M F,Wabo H K,Zeng,G Z,et al. A prenylated xanthone and antiproliferative compounds from leaves of Pentadesma butyracea [J]. Phytochem Lett,2013,6(3):326.

[22] Zhao Y Y,Shen X,Chao X,et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2cells [J]. Biochim Biophys Acta-Gen Subjects,2011,1810(4):384.

[23] Froufe H J C,Abreu R M V,Barros L,et al. Docking studies to evaluate mushrooms low molecular weight compounds as inhibitors of the anti-apoptotic protein BCL-2 [J]. Planta Med,2012,78(11):1247.

[24] Roh E M,Jin Q,Jin H G,et al. Structural implication in cytotoxic effects of sterols from Sellaginella tamariscina [J]. Arch Pharm Res,2010,33(9):1347.

[25] Sun Y,Ji Z,Zhao Y,et al. Enhanced distribution and anti-tumor activity of ergosta-4,6,8(14),22-tetraen-3-one by polyethylene glycol liposomalization [J]. J Nanosci Nanotech,2013,13(2):1435.

[26] Liang X,Sun Y,Liu L,et al. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery [J]. Int J Pharm,2013,441(1/2):1.

[27] Liang X,Sun Y,Liu L,et al. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery [J]. J Control Release,2013,172:e80.

[28] Fangkrathok N,Sripanidkulchai B,Umehara K,et al. Bioactive ergostanoids and a new polyhydroxyoctane from Lentinus polychrous mycelia and their inhibitory effects on E2-enhanced cell proliferation of T47D cells [J]. Nat Prod Res,2013,27(18):1611.

[29] Hong Y J,Jong A R,Yang K S. Inhibition of melanin production and tyrosinase expression of ergosterol derivatives from Phellinus pini [J]. Nat Prod Sci,2013,19(3):258.endprint

[30] León F,Brouard I,Torres F,et al. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells[J]. Chem Biodivers,2008,5(1):120.

[31] Thang T D,Kuo P C,Hwang T L,et al. Triterpenoids and steroids from Ganoderma mastoporum and their inhibitory effects on superoxide anion generation and elastase release [J]. Molecules,2013,19,18(11):14285.

[32] Macías M,Gamboa A,Ulloa M,et al. Phytotoxic naphthopyranone derivatives from the coprophilous fungus Guanomyces polythrix [J]. Phytochemistry,2001,58(5):751.

[33] Mata R,Gamboa A,Macias M,et al. Effect of selected phytotoxins from Guanomyces polythrix on the calmodulin-dependent activity of the enzymes cAMP phosphodiesterase and NAD-kinase [J]. J Agric Food Chem,2003,51(16):4559.

[34] Zhao Y Y,Qin X Y,Zhang Y,et al. Quantitative HPLC method and pharmacokinetic studies of ergosta-4,6,8(14),22-tetraen-3-one,a natural product with diuretic activity from Polyporus umbellatus [J]. Biomed Chromatogr,2010,24(10):1120.

[35] Zhao Y Y,Cheng X L,Zhang Y,et al. A fast and sensitive HPLC-MS/MS analysis and preliminary pharmacokinetic characterization of ergone in rats [J]. J Chromatogr B,2010,878(1):29.

[36] Sun Y,Zhao Y Y,Li G,et al. Studies of interaction between ergosta-4,6,8(14),22-tetraen-3-one (ergone) and human serum albumin by molecular spectroscopy and modeling [J]. J Chin Chem Soc-Taipei,2011,58(5):602.

[37] Liu L,Sun Y,Wei S,Hu X,Zhao Y,Fan J. Solvent effect on the absorption and fluorescence of ergone:determination of ground and excited state dipole moments [J]. Spectrochim Acta A Mol Biomol Spectrosc,2012,86:120.

[38] Zhao Y Y,Cheng X L,Wei F,et al. Ultra performance liquid chromatography coupled with electrospray and atmospheric pressure chemical ionization (ESCi)-quadrupole time-of-flight mass spectrometry with novel mass spectrometryElevated Energy (MSE) data collection technique:determination and pharmacokinetics,tissue distribution and biliary excretion study of ergone in rat [J]. J Sep Sci,2012,35(13):1619.

[39] Zhao Y Y,Qin X Y,Cheng X L,et al. Rapid resolution liquid chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detection for metabolism and pharmacokinetic studies of ergosta-4,6,8(14),22-tetraen-3-one [J]. Anal Chim Acta,2010,675(2):199.

[40] Sun Y,Liang X,Zhao Y,et al. A sensitive spectrofluorometric method for determination of ergosta-4,6,8(14),22-tetraen-3-one in rat plasma,feces,and urine for application to pharmacokinetic studies using Cerium(III) as a probe [J]. Appl Spectrosc,2013,67(1):106.endprint

[41] Zhao Y Y,Zhao Y,Zhang Y M,et al. Qualitative and quantitative analysis of the diuretic component ergone in Polyporus umbellatus by HPLC with fluorescence detection and HPLC-APCI-MS/MS [J]. Pharmazie,2009,64(6):366.

[42] 赵英永,程显隆,张萍,等.HPLC法测定猪苓中麦角甾酮的含量[J].药物剖析杂志,2009,29(9):1579.

[43] Yuan D,Yamamoto K,Bi K,et al. Studies on the marker compounds for standardization of traditional Chinese medicine “polyporus sclerotium (ChoRei)” [J]. Yakugaku Zasshi,2003,123(2):53.

[44] Zhao Y Y,Cheng X L,Zhang Y,et al. Simultaneous determination of eight major steroids from Polyporus umbellatus by high-performance liquid chromatography coupled with mass spectrometry detections [J]. Biomed Chromatogr,2010,24(2):222.

[45] 孙洋,赵英永,刘璐莎,等.血清蛋白对麦角甾-4,6,8,22-四烯-3-酮荧光光增强效果的研讨及使用[J].化学学报,2011,69(22):2703.

[46] 胡珊梅,李玲玲,肖新月,等.雷丸药材定性和定量剖析办法研讨[J].药物剖析杂志,2010,30(9):1781.

Research progress on pharmacology,pharmacokinetics and

determination of ergosta-4,6,8(14),22-tetraen-3-one

CHEN Han,CHEN Dan-qian,LI Quan-fu,LI Peng-fei,CHEN Hua,ZHAO Ying-yong*

(Key Laboratory of Resource Biology and Biotechnology in Western China,Ministry of Education,

the College of Life Sciences,Northwest University,Xi′an 710069,China)

[Abstract] Ergosta-4,6,8(14),22-tetraen-3-one (ergone) is one of main components in many medicinal fungi. Ergone has been reported to possess the activities of diuresis,cytotoxicity,antitumor,immunosuppression,as well as treatment of chronic kidney disease. According to reported literatures,an overview of spectroscopy characteristics,content determination,pharmacological activity and pharmacokinetics,etc. for ergone is presented in this review. Furthermore,the present review can provide a certain reference value for the further study and development of ergone.

[Key words] ergosta-4,6,8(14),22-tetraen-3-one; diuresis; chronic kidney disease; pharmacokinetics; content determination

doi:10.4268/cjcmm20142004

[责任编辑 张宁宁]endprint

相关资讯
最新新闻
关闭