脑损伤 缺血低氧性脑损伤对未成熟重生大鼠神经元和髓鞘的影响
杨丽君+崔红
[摘要] 意图 评论大鼠缺血低氧脑损害关于神经元和髓鞘的影响状况。 办法 将3日龄SD重生大鼠随机分为对照组和缺血低氧处理组,对照组不予任何特别处理,缺血低氧处理组大鼠行左颈总动脉结扎术后歇息1~2 h入关闭容器,充以8%O2+92%N2的混合气体,处理时刻为120 min,之后康复正常氧供。待造模完成后3 d时进行尼氏小体染色评论两组大鼠神经元的状况,造模后7 d进行劳克坚牢蓝染色评论两组大鼠的髓鞘状况。 成果 尼氏染色成果提示,与对照组比较,缺血低氧处理之后大鼠脑安排中的神经元尼氏小体染色密度显着下降;劳克坚牢蓝染色成果显现,与对照组比较,缺血低氧处理组的髓鞘显着受损。 定论 大鼠缺血低氧性脑损害对脑安排的神经元和髓鞘形成了必定程度的影响,进而导致脑安排相关的功用损害。
[关键词] 脑损害;缺血;低氧;神经元;髓鞘
[中图分类号] R741 [文献标识码] A [文章编号] 1673-9701(2017)25-0030-03
Effects of hypoxic-ischemic brain damage on neurons and myelin in immature neonatal rats
YANG Lijun CUI Hong
Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
[Abstract] Objective To investigate the effects of ischemia and hypoxic brain injury on neurons and myelin in rats. Methods Three-day-old SD neonatal rats were randomly divided into two groups including control group and ischemia-hypoxia treatment group. The control group wasnt given any special treatment. Rats in the ischemia and hypoxia treatment group were put into the closed container after left common carotid artery ligation operation and resting 1-2 hours, and the container was filled with 8%O2+92%N2 mixed gas, with the treatment time of 120 minutes, afterwards returning to normal oxygen supply. The neurons in the two groups were examined by Nedinite staining at 3 days after the completion of the modeling. The myelin sheathes of the two groups were explored by Luxol Fast Blue staining at 7 days after the compeletion of the modeling. Results The results of Nissl staining showed that, compared with that of the control group, the density of neonatal body staining was significantly decreased in the brain tissue of rats after ischemia and hypoxia treatment. Luxol Fast Blue staining results showed that the myelin sheath of the ischemic hypoxia treatment group was significantly impaired, compared with that of the control group. Conclusion Hypoxic-ischemic brain damage in rats has a certain effect on the neurons and myelin sheath of brain tissue, leading to brain tissue-related functional damage.
[Key words] Brain injury; Ischemia; Hypoxia; Neurons; Myelin sheath
缺氧缺血性腦损害(hypoxia ischemia brain damage,HIBD)是围产期引起早产儿和正常足月儿大脑损害和长时刻神经系统后遗症的最重要要素[1],研讨发现HIBD是导致重生儿逝世的重要原因,也是引起脑瘫等严峻后遗症的重要原因[2]。有根据标明,在发达国家HIBD的发作率为1‰~8‰,不发达国家发病率乃至高达26‰[3,4]。形成HIBD的原因许多,如出世时产程延伸、胎儿脐带绕颈等均有罹患HIBD的更高风险[5],此外,早产是形成重生儿HIBD的别的一个重要的风险要素[6,7]。因为早产儿结构的不成熟,关于缺氧缺血的损害反响更为剧烈,首要体现为脑室周围白质软化(periventricular leukomalacia,PVL)[8-10]。前期研讨发现早产儿HIBD最首要的病理改动是脑白质损害[11],但近年来的研讨者以为,早产儿HIBD从实质上来说是一种全脑的损害[12],亦即缺氧缺血除了影响神经胶质细胞之外,对神经元也形成相当严峻的影响。endprint
本研讨选用3日龄SD大鼠为在体试验的研讨目标,用试验动物模仿树立人类的早产儿HIBD模型,在不同时刻点评论缺血低氧对脑安排神经元和髓鞘的影响,进一步评论脑神经受缺血低氧影响的机制,为日后进行早产儿缺氧缺血脑损害的合理、有用的医治供给必定的试验室根据。
1 资料与办法
1.1 试验资料
SPF等级3日龄的SD大鼠(体重8~10 g)购自北京维通利华试验动物技能有限公司[SCXK(京)2012-0001]。克己关闭容器,8%O2+92%N2的混合气体由首都医科大学隶属北京友谊医院一致供给。
1.2 缺血低氧模型的树立
将SPF级3日龄的SD大鼠(共20只)随机分为对照组和缺血低氧处理组,对照组不予任何处理,缺血低氧处理组首要进行缺血模型的树立,4%水合氯醛依照10 μL/10 g的量对大鼠乳鼠进行麻醉,固定在手术木板上之后,取左锁骨上方位进行开口,开口0.8~1 cm左右,当心探查,寻觅左颈总动脉,用玻璃分针当心别离动脉,穿入2根6-0的手术线,别离结扎,两个结扎点之间离断动脉,然后缝合,回母鼠身边歇息1~2 h,之后入克己关闭容器,充以8%O2+92%N2的混合气体(37℃水浴),时刻为120 min,之后回母鼠身边歇息。
1.3 尼氏小体染色过程
焦油紫(甲酚紫,cresyl violet,CV)染色液的制造办法:溶液A:取冰醋酸4.6 mL,加水至400 mL,溶液B:取2.72 g无水乙酸钠,加水至100 mL,将328 mL 溶液 A与72 mL 溶液 B混合后调pH至4.0(用冰乙酸),上述溶液中参加0.4 g焦油紫,充沛进行混匀,静置一周后待用。详细染色过程如下:冰冻切片从冰箱中取出后充沛晒干,入70%酒精中4 h进行脱脂,之后入蒸馏水洗数分钟,0.1%焦油紫醋酸水溶液染色5 min,最终入100%酒精1 min,二甲苯通明,中性树脂封片。
1.4 劳克坚牢蓝(luxol fast blue,LFB)染色过程
取对照组和HI组冰冻切片脱水至100%酒精,入LFB染液中37℃过夜(16~24 h),冷却至室温,在95%酒精浸泡3~5 min洗去剩余染液,用蒸馏水洗3 min,之后入0.05%碳酸锂分色10 s,再次用蒸馏水洗3 min,入70%酒精分色,最终用梯度酒精脱水,二甲苯通明,中性树脂封片。
2 成果
2.1 缺血低氧模型成功树立
课题组前期进行了许多的缺血低氧性脑损害相關的作业,能够娴熟树立相关的动物模型,动物模型的存活率简直能够到达100%。造模后惯例行HE染色,承认模型树立成功与否。
2.2 尼氏小体染色
运用自配的焦油紫染色液依照染色过程进行脑安排神经元尼氏小体的染色,成果提示,缺血低氧3 d后,神经元尼氏小体数量显着削减,且与对照组比较,尼氏小体散布不均匀,色彩变浅,深浅纷歧,通明度也变得纷歧致。见封三图4。
2.3 劳克坚牢蓝染色
LFB染色成果提示,缺血低氧发作7 d后,胼胝体区以及侧脑室周边区域的髓鞘蓝染下降,与对照组染色的艳丽蓝色不同,缺血低氧处理组的染色偏红,提示缺血低氧7 d后,脱髓鞘现象十分严峻。见封三图5。
3 评论
缺氧缺血脑损害是临床常见胎儿/重生儿脑损害,首要原因在于部分或彻底脑缺氧、血流量削减或暂停,有较高的逝世率和致残率,引起HIBD原因许多,其间早产是形成HIBD的重要要素之一,早产儿HIBD体现较足月儿更为严峻,跟着围产医学的快速开展,早产儿存活率也随之上升,近年来早产儿的结局也有了很大的改善,但早产儿因为脑损害而带来的后遗症仍是不行疏忽的社会问题。HIBD的发病机制十分复杂,现在仍没有彻底说明,有研讨者以为HIBD损害的首要细胞为少突胶质细胞[13-16],以为少突胶质细胞祖细胞是HIBD的易损细胞,但后来一些研讨发现[17-19]HIBD是一种全脑损害,HIBD发作时除了累及神经胶质细胞,神经元也遭到严峻损害,本研讨对此进行了评论,成果发现在缺血低氧的影响下,尼氏小体数量显着下降。研讨以为[20]尼氏小体是由许多规矩而成平行摆放的粗面内质网和其间的游离蛋白体以及多核蛋白体组成的聚合体,为神经元组成蛋白质的首要场所,散布于神经元胞浆的嗜碱性颗粒。尼氏小体的功用与神经元的功用存在亲近的联系,轴突蛋白质大多来自神经元胞体的尼氏小体,神经元在其振奋传导过程中,需求不断耗费某些蛋白质物质,尼氏小体可供给新的蛋白质以弥补这种耗费[21]。正常状况下,尼氏小体在神经元中的数量和散布具有特定性,但病理状况下,神经元变性时,尼氏小体的改变十分灵敏,逐步由正常的块状或颗粒状变成粉末状乃至消失,本研讨发现缺血低氧3 d后,与对照组比较,神经元尼氏小体数量显着减低,尼氏小体散布不均匀,色彩变浅,深浅纷歧,通明度也变得纷歧致。
造模7 d时刻点的劳克坚牢蓝染色成果显现,缺血低氧影响下,即损害发作后7 d脑安排胼胝体区域(corpus callosum,cc)和侧脑室(lateral ventricle,LV)周边髓鞘蓝染率仍下降显着,提示缺血低氧导致的髓鞘损害和脱髓鞘状况较严峻。既往研讨发现,HIBD发作时,少突胶质细胞的祖细胞关于缺氧缺血的影响较为灵敏,在此过程中易于遭到严峻影响,继而导致髓鞘受损严峻[22-24],本研讨也证明了这一点。
综上,研讨发现在缺血低氧脑损害发作时,尼氏小体遭到严峻的影响,髓鞘也因为缺血低氧的影响导致许多脱失,因而,怎么添加缺血低氧后脑安排神经元尼氏小体的存活、保持髓鞘的数量以及进行髓鞘再生的医治也许是未来对早产儿HIBD医治的另一个或许的潜在方向。
[参考文献]
[1] 蔡清,薛辛东,富建华.重生儿缺氧缺血性脑病研讨现状及发展[J]. 我国有用儿科杂志,2009,24(12):968-971.endprint
[2] Burton VJ,Gerner G,Cristofalo E,et al. A pilot cohort study ofcerebral autoregulation and 2- year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia [J].BMC Neurol,2015,10(15):209.
[3] Douglas-Escobar M,Weiss MD. Hypoxic-ischemic encephalopathy:A review for the clinician[J]. JAMA Pediatr,2015,169(4):397-403.
[4] Davidson JO,Wassink G,Van den Heuij G,et al. Therapeutic hypothermia for neonatal hypoxic- ischemic encephalopathy-where to from here?[J]. Front Neurol,2015, 14(6):198.
[5] Qureshi AM,Ur Rehman A,Siddiqi TS. Hypoxic ischemic encephalopathy in neonates[J]. J Ayub Med Coll Abbottabad,2010,22(4):190-193.
[6] Barrett RD,Bennet L,Davidson J,et al. Destruction and reconstruction:Hypoxia and the developing brain[J]. Birth Defects Res Part C Embryo Today Rev,2007,81(3):163-176.
[7] Volpe JJ. Brain injury in premature infants:A complex amalgam of destructive and developmental disturbances[J].Lancet Neurol,2009,8(1):110-124.
[8] Figueira RL,Gon?觭alves FL,Sim?觛es AL,et al. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia[J]. Braz J Med Biol Res,2016,49(7):e5258.
[9] Ichinose M1,Kamei Y,Iriyama T,et al. Hypothermia attenuates apoptosis and protects contact between myelin basic protein-expressing oligodendroglial-lineage cells and neurons against hypoxia-ischemia[J]. J Neurosci Res,2014,92(10):1270-1285.
[10] Back SA. White matter injury in the preterm infant:Pathology and mechanisms[J]. Acta Neuropathol,2017:1-19.
[11] Liu XB,Shen Y,Plane JM,et al.Vulnerability of premyelinating oligodendrocytes to white matter damage in neonatal brain injury[J]. Neurosci Bull,2013,29(2):229-238.
[12] Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities[J]. Pediatrics,2005,116(1):221-225.
[13] 胡蘭,陈超. 3日龄未成熟大鼠缺血性脑损害后少突胶质细胞超微结构改变[J].我国当代儿科杂志,2007,9(3):225-228.
[14] Qi B,Hu L,Zhu L, et al. Metformin attenuates cognitive impairments in hypoxia-ischemia neonatal rats via improving remyelination[J]. Cell Mol Neurobiol,2016:1-10.
[15] Itoh K,Maki T,Shindo A,et al. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury[J]. Neurosci Res,2016, 106:66-69.
[16] Chen P,Wang L,Deng Q,et al. Alteration in rectification of potassium channels in perinatal hypoxia ischemia brain damage[J]. J Neurophysiol,2015,113(2):592-600.endprint
[17] Du Plessis AJ,Volpe JJ. Perinatal brain injury in the preterm and term newborn[J]. Curr Opin Neurol,2002,15(2):151-157.
[18] Inder TE,Volpe JJ. Mechanisms of perinatal brain injury[J].Semin Neonatol,2000,5(1):3-16.
[19] Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant[J]. Pediatr Res,2001,50(5):553-562.
[20] 郭以河,趙梅兰,彭瑞云,等.尼氏小体染色办法的改善及其在神经病理学研讨中的使用[J],有用医技杂志,2003,10(6):605-606.
[21] 詹平,李元锋,吴德生.壬基酚对大鼠 F1 代脑发育相关基因表达的影响[J].防备医学情报杂志,2005,21(3):257-260.
[22] Guardia CM,Paez PM,Pasquini LA,et al. Inhalation of growth factors and apo-transferrin to protect and repair the hypoxic-ischemic brain[J]. Pharmacol Res,2016,109:81-85.
[23] Lisak RP,Nedelkoska L,Benjamins JA. Effects of dextromethorphan on glial cell function:Proliferation,maturation,and protection from cytotoxic molecules[J]. Glia,2014,62(5):751-762.
[24] Fancy SP,Harrington EP,Yuen TJ,et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination[J]. Nat Neurosci,2011,14(8):1009-1016.endprint