小鼠打针DNA的量 口服pCDNA3.1+/Ag85ADNA疫苗在小鼠肠道的表达
徐佳+刘滢+于淼
[摘要] 意图 剖析口服pCDNA3.1+/Ag85A DNA疫苗在小鼠肠道部分的表达状况。办法 用脂质体包裹pCDNA3.1+/Ag85A DNA质粒制成口服疫苗。对照组雌性C57BL/6小鼠5只用生理盐水灌胃,试验组雌性C57BL/6小鼠5只用脂质体包裹的Ag85A DNA疫苗灌胃。共免疫3次,每次距离14 d。免疫完毕后14 d处死小鼠,取小肠安排固定于4%多聚甲醛中备用。选用免疫荧光和免疫组化办法检测两组小鼠小肠派氏淋巴结、派氏淋巴结内的树突状细胞和小肠黏膜上皮细胞中Ag85A的表达状况。成果 在试验组小鼠的小肠黏膜上皮细胞、派氏淋巴结以及派氏淋巴结内的树突状细胞中均检测到重组pCDNA3.1+/Ag85A DNA疫苗的表达,并且不同部位的小肠黏膜上皮细胞中Ag85A的表达强度不同,接近固有层的小肠黏膜上皮细胞内Ag85A的表达强度比接近肠腔侧的小肠黏膜上皮细胞高(P<0.05)。在对照组小鼠上述部位无重组DNA疫苗的表达。定论 脂质体包裹的口服DNA疫苗能够被小鼠肠道吸收,一起可诱导特异性黏膜免疫反响。
[要害词]Ag85A;DNA疫苗;脂质体;上皮细胞;树突状细胞;小鼠
[中图分类号] R332 [文献标识码] A [文章编号] 1674-4721(2017)06(c)-0004-04
[Abstract]Objective To analyze the expression of oral pCDNA3.1+/Ag85A DNA vaccine in the intestinal tract of mice.Methods Oral vaccine was made using liposomes to parcel pCDNA3.1+/Ag85A DNA plasmid.5 female C57BL/6 mice in control group were given saline water for gavage while 5 female C57BL/6 mice in experimental group were given liposome encapsulated Ag85A DNA vaccine for gavage.The mice were immunized three times with 14 days interval between each time.In the fourteenth day after immunization,cervical dislocation executed in mice and the small intestine was fixed with 4% paraformaldehyde to be prepared to detect the expression of Ag85A in the intestinal Peyer patches,the dendritic cells in Peyer patches and intestinal epithelial cells with immunofluorescence and immunohistochemistry methods.Results Oral vaccine pCDNA3.1+/Ag85A DNA was expressed in intestinal Peyer patches,the dendritic cells in Peyer patches and the intestinal epithelial cells of mice in the experimental group,and in different parts of the intestinal epithelial cells in mice of the experimental group,the expression intensity of Ag85A was different.The expression intensity of Ag85A was higher near the lamina propria than near the lumen of intestinal epithelial cells (P<0.05).It was not expressed in above parts of mice in the control group.Conclusion Oral DNA vaccine parceled with liposomes can be absorbed by intestinal tract of mice and induce specific mucosal immune response.
[Key words]Ag85A;DNA vaccine;Liposomes;Epithelial cells;Dendritic cells;Mice
Ag85A是結核分枝杆菌的一种外分泌蛋白,能够影响机体发作特异性免疫应对,包含体液免疫应对和细胞免疫应对。卡介苗(BCG)也包含编码Ag85A的基因。研讨标明,裸DNA疫苗经肌内打针后,其意图基因表达在肌细胞内并且能够诱导机体发作免疫应对[1-2],该裸DNA疫苗经肌内打针后首要引起Th1免疫应对,而经基因枪打针后首要引起Th2免疫应对,一起相应的抗体发作水平升高[3-4]。但是,现在还没有口服DNA疫苗在消化道部分表达的报导。本试验经过检测口服pCDNA3.1+/Ag85A DNA疫苗的基因表达产品在C57BL/6小鼠肠道部分的表达,为临床经口服用DNA疫苗供给理论依据。
1材料与办法
1.1材料
脂质体包裹的口服pCDNA3.1+/Ag85A DNA疫苗为中国医科大学免疫学教研室制备,其间的LipofectamineTM 2000购于Invitrogen公司;6~8周龄的雌性C57BL/6小鼠由中科院上海试验动物中心供给,合格证号:中科动管第005号;无内毒素超纯质粒DNA提取、纯化试剂盒购于Promega公司;Jackson ImmunoResearch Laboratories供给Texas Red conjugated Goat Anti-Armenian Hamster IgG;Purified Armenian Hamster-anti-mouse CD11c购于BD Pharmingen公司;FITC-goat-anti-chicken IgY和HRP-goat-anti-chicken IgY二抗购于Gene公司;chicken anti-Ag85A IgY一抗购于Prosci公司;DAB显色试剂盒和牛血清蛋白(BSA)购自北京中杉公司。
1.2疫苗制备
将Ag85A基因序列全长扩增,经测序、同源性剖析后,刺进pCDNA3.1+真核表达载体,经判定正确后转化入DH5α扩增,无内毒试剂盒提取、纯化质粒pCDNA3.1+/Ag85A,灌胃前将脂质体LipofectamineTM 2000与质粒充沛混匀,4℃静置20 min,待脂质体充沛包裹后制成口服DNA疫苗[5]。
1.3动物分组及免疫
将10只雌性6~8周龄的C57BL/6小鼠随机分红两组,免疫前2 h禁食水。用7.5% NaHCO3和Hank液按1∶4份额混合制备胃酸中和液,每只鼠灌胃300 μl胃酸中和液中和胃酸,30 min后灌胃免疫。试验组小鼠灌胃100 μg脂质体包裹的重组pCDNA3.1+/Ag85A质粒DNA疫苗,对照组小鼠灌胃等量的生理盐水。每组小鼠免疫3次,每次距离14 d[6]。
1.4免疫组化技能检测小鼠肠道部分Ag85A的表达
在口服疫苗免疫完毕后14 d处死小鼠,PBS冲刷小肠安排,将含有派氏淋巴结的小肠安排置入4%多聚甲醛备用。标本经梯度乙醇脱水和二甲苯通明后,进行白腊包埋、切片。标本经二甲苯脱蜡、梯度乙醇水化后,加3% H2O2关闭10 min。抗原修正后用5% BSA关闭。chicken anti-Ag85A IgY(1∶400) 4℃过夜后再用HRP-goat-anti-chicken IgY(1∶200)37℃孵育30 min。DAB显色、苏木精染色、0.5%~1%盐酸乙醇分解后,再经梯度乙醇脱水和二甲苯通明。抗体孵育、染色等操作后均用PBS洗3次,5 min/次。中性树胶封片后用一般光学显微镜调查Ag85A在小鼠肠黏膜上皮细胞、派氏淋巴结和派氏淋巴结内树突状细胞中的表达。
1.5免疫荧光技能检测小鼠肠道部分Ag85A的表达
将4%多聚甲醛固定24 h后的小鼠小肠安排置于30%蔗糖溶液中4℃过夜,待安排标本沉至蔗糖溶液底部后取出,OTC包埋,冰冻切片,厚度约5 μm。晒干后的标本分别用3% H2O2和5% BSA 37℃关闭30 min后,一起加chicken anti-Ag85A IgY一抗(1∶400)和Purified Armenian Hamster-anti-mouse CD11c(1∶20)一抗4℃过夜,FITC-goat-anti-chicken IgY二抗(1∶200)和Texas Red conjugated Goat Anti-Armenian Hamster IgG(1∶75)一起37℃避光孵育30 min,甘油封片后置于荧光显微镜下调查Ag85A在小鼠肠黏膜上皮细胞、派氏淋巴结和派氏淋巴结内树突状细胞中的表达状况。
1.6统计学剖析
用SPSS 18.0统计学软件对计量材料进行t查验,以P<0.05为差异有统计学含义。
2成果
2.1两组小鼠小肠黏膜上皮细胞及派氏淋巴结中Ag85A表达的比较
免疫组化和免疫荧光成果显现,试验组小鼠小肠黏膜上皮细胞和派氏淋巴结中均有Ag85A广泛表达,而对照组小鼠上述部位无Ag85A表达。在试验组小鼠不同部位的小肠黏膜上皮细胞中,Ag85A的表达强度不同。在相同均匀光密度和均匀灰度值的条件下,接近固有层的小肠黏膜上皮细胞内Ag85A的均匀积分光密度为17.4416±5.5412,总均匀灰度值为15 167.1800±326.8648,而接近肠腔侧的小肠黏膜上皮细胞内Ag85A的均匀积分光密度为7.4114±1.8510(t=3.750,P=0.020),总均匀灰度值为7165.3120±158.6779(t=53.369,P=0.000),标明接近固有层的小肠黏膜上皮细胞中Ag85A的表达强度比接近肠腔侧的小肠黏膜上皮细胞高,差异有统计学含义(图1、2)。
2.2 Ag85A在两组小鼠小肠派氏淋巴结内树突状细胞中表达的比较
免疫荧光成果显现,Ag85A在试验组小鼠小肠派氏淋巴结内的树突状细胞中也有表达,但表达的细胞数量较少,而在对照组小鼠上述部位无表达(图3)。
3评论
研讨标明,DNA疫苗能够用于医治感染、肿瘤和超敏反响以及器官移植[7],而口服疫苗是一种被广泛承受的给藥办法,具有许多长处[8]。肠道是触摸抗原物质最多的器官,因而被认为是人体最大的免疫器官。肠道相关淋巴安排,包含肠系膜淋巴结和派氏淋巴结,一般被认为是发作免疫反响的首要场所,而发挥免疫效应的细胞则遍及于肠黏膜内[9-10]。虽然正常个别或许会在肠道甚至在血清中对这些无害性抗原发作低水平的抗体反响[11],但是在生理环境中活泼的T细胞反响一般不会发作。在某些病理条件下,上述免疫反响可导致肠绞痛和克罗恩病等肠道疾病的发作[12-13]。肠道对无害性抗原的免疫低反响状况被称为口服耐受。口服耐受在保护机体正常生理功能中发挥重要效果,但也对口服疫苗的有用性供给了一个艰巨的应战。
M细胞被认为是肠道内最有用的将抗原从肠腔转运到肠道相关淋巴安排的细胞[14],是黏膜疫苗效果的要害,也是许多病毒和细菌侵入机体致病的要害[15-16]。研讨标明,M 细胞能够吸取经脂质体包裹的DNA 疫苗,然后发动肠道黏膜免疫应对[5]。还有报导称小肠黏膜内的树突状细胞也能够吸取抗原物质[17-18]。本研讨在试验组小鼠小肠派氏淋巴结内部分树突状细胞中调查到了Ag85A DNA疫苗的表达,而在小肠黏膜内树突状细胞中未见疫苗编码蛋白的表达。本试验还发现,试验组小鼠小肠黏膜上皮细胞和小肠内派氏淋巴结中均有Ag85A的表达。不同部位的小肠黏膜上皮细胞中Ag85A的表达强度不同,接近固有层的小肠黏膜上皮细胞比接近肠腔侧的小肠黏膜上皮细胞高,其机制还有待进一步研讨。
[参考文献]
[1]Neeraj Dhar,Vivek Rao,Anil K,et al.Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis[J].Med Microbiol Immunol (Berl),2004,193(1):19-25.
[2]Suttmann H,Jacobsen M,Reiss K,et al.Mechanisms of bacillus Calmette-Guerin mediated natural killer cell activation[J].J Urol,2004,172(4 Pt 1):1490-1495.
[3]Baldwin SL,Souza DD,Orme IM,et al.Immunogenicity and protective efficacy of DNA vaccines encoding secrected and non-secrected forms of Mycobacterium tuberculosis Ag85A[J].Tuber Lung Dis,1997,79(4):251-259.
[4]Huygen K,Content J,Denis O,et al.Immunogenicity and protective efficacy of a tuberculosis DNA vaccine[J].Nat Med,1996,2(8):893-898.
[5]徐佳.口服Ag85A DNA 疫苗在小鼠肠道M细胞的表达[J].沈阳医学院学报,2010,12(4):197-207.
[6]徐佳,刘滢,王大南,等.口服A985A DNA疫苗表达产品在脾脏的散布[J].世界免疫学杂志,2009,32(2):85-88.
[7]Zaman M,Ozberk V,Langshaw EL,et al.Novel platform technology for modularmucosalvaccine that protects against streptococcus[J].Sci Rep,2016,6:39274.
[8]Bemark M,Hazanov H,Strmberg A,et al.Limited clonal relatedness between gut IgA plasma cells and memory B cells afteroralimmunization[J].Nat Commun,2016,7:12698.
[9]Mowat AMcI,Viney JL.The anatomical basis of mucosal immune responses[J].Immunol Rev,1997,156:145-166.
[10]Mowat AM.Anatomical basis of tolerance and immunity to intestinal antigens[J].Nat Rev Immunol,2003,3(4):331-341.
[11]MacPherson AJ,Uhr J.Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J].Science,2004,303(5664):1662-1665.
[12]Paiatto LN,Silva FG,Bier J,et al.OralToleranceInduced by OVA Intake Ameliorates TNBS-Induced Colitis in Mice[J].PLoS One,2017,12(1):e0170205.
[13]Mowat AM,Weiner HL.Basic mechanisms and clinical implications of oral tolerance[J].Opin Gastroenterol,1999,15(6):546-556.
[14]Wang D,Xu J,Feng Y,et al.Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response[J].Vaccine,2010,28(18):3134-3142.
[15]Pickard JM,Chervonsky AV.Sampling of the intestinal microbiota by epithelial m cells[J].Curr Gastroenterol Rep,2010, 12(5):331-339.
[16]Lim JS,Na HS,Lee HC,et al.Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model[J].Biochem Biophys Res Commun,2009,390(4):1322-1327.
[17]Leu SJ,Yang YY,Liu HC,et al.Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function[J].J Cell Physiol,2016.DOI:10.1002/jcp.25604.
[18]Falcón CR,Masih D,Gatti G,et al.Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses[J].PLoS One,2014, 9(12):e114505.
(收稿日期:2017-01-23 本文編辑:许俊琴)