遗传学研究进展 甲状腺未分解癌的遗传学改动研究进展
赵佳正
[摘要]甲状腺未分解癌是一种恶性程度很高的肿瘤,差异于分解型甲状腺癌,惯例的手术、放疗及化疗医治作用较差。跟着甲状腺未分解癌分子发病机制的不断研讨,许多遗传学改动都被以为参加了甲状腺未分解癌发作、开展的进程,为甲状腺未分解癌的分子靶向医治供给了新的或许。本文将介绍与甲状腺未分解癌发病相关的遗传学改动的研讨开展,首要包含RAS/RAF/MAPK/ERK信号通路和PI3K/Akt mTOR信号通路。
[关键词]甲状腺未分解癌;分子机制;基因
[中图分类号] R736.1 [文献标识码] A [文章编号] 1674-4721(2017)04(c)-0016-04
[Abstract]As a highly malignant tumor,anaplastic thyroid carcinoma is different from differentiated thyroid cancer,conventional surgery,radiotherapy and chemotherapy can achieve poor results in the treatment of thyroid undifferentiated carcinoma.With the unceasing research on molecular pathogenesis of anaplastic thyroid carcinoma,many genetic changes are thought to be involved in the development process of anaplastic thyroid carcinoma and to provide a new possibility for molecular targeted treatment of thyroid undifferentiated carcinoma.In this paper,the research progress of the genetic changes related to the pathogenesis of anaplastic thyroid carcinoma is introduced,including RAS/RAF/MAPK/ERK signaling pathway and PI3K/Akt mTOR signaling pathway.
[Key words]Anaplastic thyroid carcinoma;Molecular mechanism;Gene
近年來甲状腺癌的发病率不断上升,已经成为最常见的内分泌肿瘤[1]。依据甲状腺癌病理安排类型,可分为乳头状甲状腺癌(papillary thyroid cancer,PTC)、滤泡状甲状腺癌(follicular thyroid cancer,FTC)、低分解型甲状腺癌(poorly differentiated thyroid cancer,PDTC)和甲状腺未分解癌(anaplastic thyroid carcinoma,ATC),其间PTC和FTC又被称为分解型甲状腺癌(differentiated thyroid cancer,DTC)。ATC是一种恶性程度很高的肿瘤,在所有甲状腺癌中占2%~15%,导致了绝大多数的甲状腺癌相关逝世,中位生计期为6个月,临床表现为迅速增长的颈部肿块,常常随同压榨症状[2-3]。ATC常具有高度侵袭性,容易发作腺体外侵略及淋巴结搬运,60%的患者有远处搬运,ATC的TNM分期均为Ⅳ期[3]。在曩昔的几十年中,ATC生计的改进微乎其微[4],也正由于如此,对ATC分子发病机制的研讨就显得尤为重要。研讨人员企图经过遗传学改动的研讨找到医治ATC的新途径。
甲状腺癌恶性程度开展被以为是一个多进程的肿瘤发作进程,甲状腺滤泡细胞前期发作的RAS、BRAF导致分解型甲状腺癌的发作,而p53基因失活骤变导致了细胞进一步失分解而呈现甲状腺低分解癌(PDTC)和ATC[5]。与ATC发作相关的基因组改动首要包含RAS/RAF/MAPK/ERK信号通路、PI3K/Akt mTOR信号通路[5-6],下面将依照遗传学改动的类型(基因骤变、基因重排和基因拷贝数添加)分类论述。
1基因骤变
1.1 Ras骤变
Ras宗族包含K-ras、H-ras及N-ras,Ras坐落RAF/MAPK及PI3K/Akt mTOR的上游,Ras骤变会导致这两条通路反常活化[7]。RAS骤变常见于滤泡性甲状腺癌,但在PTC和ATC中也有报导[8]。在对甲状腺癌的安排病理研讨中,发现高达60%的ATC呈现Ras骤变,而在PTC中骤变率<15%,PDTC中骤变率为30%~35%[9],可见Ras骤变频率与分解程度成负相关。在甲状腺癌开展的进程中,RAS似乎是一个“前期”骤变,RAS骤变被以为启动了DTC到ATC这个去分解进程,由于RAS骤变会使细胞发作基因和分子错排,例如导致染色体不稳定[10]。
1.2 BRAF骤变
RAF宗族包含ARAF、BRAF和CRAF 3种亚型。BRAF是Raf丝氨酸/苏氨酸激酶宗族中的一员,是Ras的下流效应器,在正常甲状腺细胞增殖、凋亡及甲状腺特异基因表达中起重要的调理作用[11]。研讨显现,大鼠甲状腺细胞中BRAF基因骤变及随后的MAPK的活化能缄默沉静钠/碘协同转运体(sodium/iodide symporter,NIS)的表达,而经过siRNA去除BRAF骤变能够康复甲状腺特异性基因的表达[12],BRAFV600E骤变被证明会阻止NIS基因的表达以及NIS的膜定位,而经过按捺BRAF,可反转NIS转录按捺[12]。BRAFV600E骤变可导致DTC细胞中甲状腺特异蛋白表达下调,促进去分解,还与搬运和侵袭相关[13]。根据BRAF骤变在DTC以及DTC转化成ATC中发挥重要作用,BRAF骤变成为医治ATC的研讨靶点[14]。
1.3 PI3K突變
磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinage,PI3K)为脂激酶宗族,参加细胞增殖、存活。磷脂酰肌醇3-激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白(phosphatidylinositol 3-kinage/protein kinase B/mammaliantarget of rapamycin,P13K/Akt mTOR)信号通路与ATC的发作、开展密切相关[15],其间的PI3K骤变是最常见的骤变,ATC中PI3K骤变发作的频率远高于PTC[7]。PI3K骤变可经过按捺cAMP而下降NIS表达,使得甲状腺癌细胞向未分解方向开展,一起PI3K骤变可上调下流的mTOR含量,mTOR可促进细胞增殖、按捺细胞凋亡,mTOR又能够下降NIS表达[16]。
1.4 p53骤变
p53是一种抑癌基因,编码的蛋白质分子量为53 kDa,是一种转录因子,p53抑癌基因在调理细胞周期和细胞凋亡中的起重要作用[17]。p53基因在DTC中骤变频率低而在ATC中骤变频率可高达95%,在并发PTC和ATC的病理安排中,可在ATC安排中检测到p53骤变,而在PTC中检测不到[18]。有学者提出了“两步机制”,甲状腺癌中,在BRAF骤变的细胞基础上发作p53基因的骤变,使得肿瘤失分解,p53骤变的呈现是一个晚期事情,其使得肿瘤转化和去分解而变得更具侵略性[19-20]。现在,针对p53的靶向医治已成为研讨热门。
1.5 β-catenin基因骤变
β-catenin是一种多功能蛋白分子,散布于细胞质中,高达60%~65%的ATC中存在β-catenin骤变[21]。在ATC中,β-catenin基因骤变首要触及Wnt/β-catenin通路以及与E-cadherin/β-catenin相关的细胞黏附体系。β-catenin在细胞增殖和细胞黏附中都发挥作用。Wnt/β-catenin通路中过度表达的β-catenin会进入细胞核内,引起细胞继续增殖;E-cadherin/β-catenin的细胞黏附体系中β-catenin骤变会使细胞间黏附力削弱,进而添加肿瘤细胞的侵袭性[22]。
1.6 Notch
Notch受体(Notch1-4)及其配体不同情况下可调理细胞的增殖,搬迁、黏赞同分解[23]。Ferretti等[24]初次证明,与正常甲状腺安排比较,Notch在DTC中表达显着下降,而在ATC中进一步下降,Notch 1对细胞成长和分解的影响是经过调控基因转录来完成。虽然在其他安排和癌症中有许多研讨,但Notch 1在甲状腺癌中的作用最近才被探究。作为Notch 1下流效应分子,Hes 1在甲状腺细胞增殖和分解中起中心作用,在Hes 1(-/-)小鼠胚胎中,甲状腺表面积削减了34%~65%,NIS蛋白削减69%[25]。
1.7 NF-κB
核因子κB(NF-κB)归于转录因子宗族,可被多种促炎细胞因子、化疗药物和电离辐射激活[26]。许多NF-κB靶基因是促生计基因,对癌细胞固有的化疗和放射医治反抗至关重要,体外和体内各种肿瘤细胞包含甲状腺癌在内的研讨中,经过按捺NF-κB活性会导致细胞凋亡或增强化疗和放射医治的敏感性[27]。在PTC、FTC及ATC中均发现NF-κB被激活,因而,按捺NF-κB的活化被以为可经过肿瘤细胞的内涵和外在机制加强化疗和放射医治的作用[28]。
2基因重排
RET原癌基因坐落染色体10q11.21,其包含了21个外显子,编码一跨膜的络氨酸激酶受体,包含了1114个氨基酸[29]。现在文献共报导了13种甲状腺癌 RET/PTC基因重排,发作RET/PTC基因重排后会导致RET基因的继续活化,进而活化下流的RAS基因,RET/PTC基因重排会导致染色体不稳定,使细胞失分解[30]。另一个常见的易位是TRK-fused(TFG)和受体酪氨酸激酶NTRK 1,类似于RET的染色体重排,一些TFG的交融蛋白同样会导致MAPK激酶过度激活[31]。
3基因拷贝数添加
受体酪氨酸激酶(receptor tyrosine kinase,RTK)是最大的一类酶联受体,包含了50余种,而常见的表皮成长因子受体(epidermal growth factor receptor,EGFR)、血小板成长因子受体(platelet-derived growth factor receptor,PDGFR)、血管内皮成长因子受体(vascularendothelial growth factor receptor,VEGFR)等骤变与多种肿瘤的发作相关[32]。在ATC中,RTK的骤变并不常见,但RTK基因拷贝数的添加较为常见。一项研讨发现,ATC中发作相应基因拷贝数添加的频率分别为:EGFR 46.3%,PDGFR 23.9%,VEGFR 45.5%,而PIK3C基因拷贝数添加的频率为38.3%[33]。
总归,ATC恶性程度高,预后差,至今仍未找到较好的医治手法,传统的手术、化疗、放疗作用都不抱负,而分子机制的研讨发现,ATC中存在多种基因骤变及基因反常扩增,这些分子机制的研讨或许能为该病的医治供给新的思路。
[参考文献]
[1]Haugen BR,Alexander EK,Bible KC,et al.2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer:the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer[J].Thyroid,2016,26(1):1-133.
[2]馮影,高超.94例甲状腺未分解癌临床剖析[J].天津医科大学学报,2008,14(2):207-209.
[3]Smallridge RC,Ain KB,Asa SL,et al.American thyroid association guidelines for management of patients with anaplastic thyroid cancer[J].Thyroid,2012,22(11):1104-1139.
[4]Bisof V,Rakusic Z,Despot M.Treatment of patients with anaplastic thyroid cancer during the last 20 years:whether any progress has been made?[J].Eur Arch Otorhinolaryngol,2015,272(7):1553-1567.
[5]Xu B,Ghossein R.Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma[J].Endocr Pathol,2016, 27(3):205-212.
[6]Lennon P,Deady S,Healy ML,et al.Anaplastic thyroid carcinoma:failure of conventional therapy but hope of targeted therapy [J].Head Neck,2016,38(1):E1122-E1129.
[7]Santarpia L,El-Naggar AK,Cote GJ,et al.Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer[J].J Clin Endocrinol Metab,2008,93(1):278-284.
[8]Gupta N,Dasyam AK,Carty SE,et al.RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicularpattern cancers[J].J Clin Endocrinol Metab,2013,98(1),E914-E922.
[9]Basolo F,Pisaturo F,Pollina LE,et al.N-ras mutation in poorly differentiated thyroid carcinomas:correlation with bone metastases and inverse correlation to thyroglobulin expression[J].Thyroid,2000,10(1):19-23.
[10]Howell GM,Hodak SP,Yip L.RAS mutations in thyroid cancer[J].Oncologist,2013,18(2):926-932.
[11]Rushton S,Burghel G,Wallace A,et al.Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma[J].Histopathology,2016,69(2):524-526.
[12]Riesco-Eizaguirre G,Rodríguez I,De la Vieja A,et al.The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer[J].Cancer Res,2009,69(21):8317-8325.
[13]Lim AM,Taylor GR,Fellowes A,et al.BRAF inhibition in BRAFV600E-positive anaplastic thyroid carcinoma[J].J Natl Compr Canc Netw,2016,14(3):249-254.
[14]Latteyer S,Tiedje V,Konig K,et al.Targeted next-generation sequencing for TP53,RAS,BRAF,ALK and NF1 mutations in anaplastic thyroid cancer[J].Endocrine,2016,54(3):733-741.
[15]Liu Z,Hou P,Ji M,et al.Hishly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicllar thyroid cancers[J].J Clin Endocrinol Metab,2008,93(5):3106-3116.
[16]Zhang P,Wang C,Ma T,et al.O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway[J].Onco Targets Ther,2015,8(1):3305-3313.
[17]Blagosklonny MV,Giannakakou P,Wojtowicz M,et al.Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells[J].J Clin Endocrinol Metab,1998,83(1):2516-2522.
[18]Spitzweg C.Gene therapy in thyroid cancer[J].Horm Metab Res,2009,41(6):500-509.
[19]Soares P,Lima J,Preto A,et al.Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas[J].Curt Genomies,2011,12(1):609-617.
[20]Mc Fadden DG,Vernon A,Santiago PM,et al.p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer[J].Proc Natl Acad Sci USA,2014,111(16):E1600-E1609.
[21]Garcia-Rostan G,Tallini G,Herrero A,et al.Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma[J].Cancer Res,1999,59(8):1811-1815.
[22]Xing M.Molecular pathogenesis and mechanisms of thyroid.cancer[J].Nat Rev Cancer,2013,13(3):184-199.
[23]Kim HJ,Kim MJ,Kim A,et al.The role of notch 1 signaling in anaplastic thyroid carcinoma[J].Cancer Res Treat,2017, 49(2):509-517.
[24]Ferretti E,Tosi E,Po A,et al.Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors[J].J Clin Endocrinol Metab,2008,93(10):4080-4087.
[25]Li J,Zheng X,Gao M,et al.Suberoyl bis-hydroxamic acid activates Notch 1 signaling and induces apoptosis in anaplastic thyroid carcinoma through p53[J].Oncol Rep,2017,37(3):458-464.
[26]Miyamoto S.Nuclear initiated NF-κB signaling:NEMO and ATM take center stage[J].Cell Res,2011,21(3):116-130.
[27]Meng Z,Lou S,Tan J,et al.Nuclear factor-kappa B inhibition can enhance the rapeutic efficacy of 131I on the in vivo management of differentiated thyroid cancer[J].Life Sci,2012,91(5):1236-1241.
[28]Yin Q,Liu S,Dong A,et al.Targeting transforming growth factor-beta 1 (TGF-beta 1) inhibits tumorigenesis of anaplastic thyroid carcinoma cells through ERK1/2-NF kappa B-PUMA signaling[J].Med Sci Monit,2016,22(1):2267-2277.
[29]Romei C,Elisei R.Ret/ptc translocations and clinico-pathological features in human papillary thyroid carcinoma[J].Front Endocrinol (Lausanne),2012,(3):54.
[30]Kimura ET,Nikiforova MN,Zhu Z,et al.High prevalence of BRAF mutations in thyroid cancer:genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma[J].Cancer Res,2003,63(1):1454-1457.
[31]Greco A,Miranda C,Pierotti MA.Rearrangements of NTRK1 gene in papillary thyroid carcinoma[J].Mol Cell Endocrinol,2010,28,321(1):44-49.
[32]Antonelli A,Bocci G,Fallahi P,et al.CLM3,a multitarget tyrosine kinase inhibitor with antiangiogenic properties,is active against primary anaplastic thyroid cancer in vitro and in vivo[J].J Clin Endocrinol Metab,2014,99(1):E572-E581.
[33]Liu Z,Hou P,Ji M,et al.Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers[J].J Clin Endocrinol Metab,2008,93(1):3106-3116.
(收稿日期:2017-03-14 本文編辑:祁海文)