首页

粒细胞集落刺激因子说明书 粒细胞集落刺激因子的神经维护效果及临床试验研究进展

点击:0时间:2024-02-18 08:13:50

罗薇 舒斯云 马林 王斌

[摘要] 粒细胞集落影响因子作为一种影响骨髓粒系造血的成长因子,在临床上被用于医治各种原因引起的粒细胞削减症。但是,越来越多体表里研讨实验及临床实验标明粒细胞集落影响因子经过激活多种信号转导通路在神经体系损害性疾病中发挥神经维护效果,包含发动外周干细胞搬迁至神經体系、减轻神经细胞凋亡、平衡炎症反响、促进神经干细胞再生及血管生成等,但也存在必定的争议。现在在脑卒中、肌萎缩性侧索硬化及脊髓损害等神经体系疾病中选用粒细胞集落影响因子医治已进入临床实验阶段,在缺氧缺血性脑损害重生动物模型中也证明其效果。现将粒细胞集落影响因子的神经维护效果及临床实验安全性及效果作一总述。

[关键词] 粒细胞集落影响因子;神经损害疾病;重生儿缺血缺氧性脑损害;神经维护;临床实验

[中图分类号] R743.3 [文献标识码] A [文章编号] 1673-9701(2018)14-0164-05

[Abstract] Granulocyte colony-stimulating factor, as a growth factor that stimulates bone marrow hematopoiesis, is clinically used to treat neutropenia caused by various causes. However, more and more in vitro and in vivo research experiments and clinical trials have shown that granulocyte colony-stimulating factor exerts neuroprotective effects in nervous system injury diseases by activating multiple signal transduction pathways, including mobilizing peripheral stem cells to migrate to the nervous system, reducing nerves apoptosis, balancing inflammatory responses, and promoting neural stem cell regeneration and angiogenesis, but there is also some controversy. Currently, the use of granulocyte colony-stimulating factor therapy in stroke, amyotrophic lateral sclerosis and spinal cord injury has entered clinical trials, and its efficacy has also been confirmed in a neonatal animal model of hypoxic-ischemic brain damage. The neuroprotective effects of granulocyte colony-stimulating factor and the safety and efficacy of clinical trials are reviewed.

[Key words] Granulocyte colony-stimulating factor; Nerve injury disease; Neonatal hypoxic-ischemic brain damage; Neuroprotection; Clinical trials

粒细胞集落影响因子(Granulocyte colony-stimulating factor,G-CSF)是一种影响骨髓粒系造血细胞增殖、分解和存活的成长因子,在临床上运用广泛,常用于原发性或继发性中性粒细胞削减症。越来越多的依据标明,粒细胞集落影响因子易透过血脑屏障与其受体结合后发挥发动造血干细胞及骨髓间充质干细胞、抗凋亡、抗炎、促进神经元分解及血管发作等效果[1]。近年来,国表里运用粒细胞集落影响因子医治多种神经损害性疾病已进入Ⅰ、Ⅱ期临床实验阶段;别的,粒细胞集落影响因子在多种缺氧缺血性脑损害重生动物模型中被证明在神经维护方面具有巨大的远景。

1 粒细胞集落影响因子及其受体

粒细胞集落影响因子是由四个反向平行的α-螺旋组成的分子量为19.6 kDa的糖蛋白,由单个基因编码,坐落17号染色体q21~22上,可由骨髓基质细胞、内皮细胞、巨噬细胞、成纤维细胞和星形胶质细胞等发作[2]。粒细胞集落影响因子受体(Granulocyte colony-stimulating factor receptor,G-CSFR)是坐落1号染色体p35~p34.3上的一种Ⅰ型膜蛋白,其胞外区域是由免疫球蛋白样结构域、细胞因子受体-同源结构域和三个纤连蛋白Ⅲ型结构域组成的复合结构。G-CSFR不只表达在各种造血细胞,如嗜中性粒细胞及其前体、单核细胞、血小板、淋巴细胞和白血病细胞,一起也表达在非造血细胞上,如内皮细胞、滋补细胞、恶性实体肿瘤安排、神经元和神经胶质细胞等[3]。而在中枢神经体系中,该受体被证明表达于齿状回、嗅觉皮层和嗅球、海马CA3区等皮质层中的锥体细胞(尤其是Ⅱ和V层),小脑中的浦肯野细胞,脑室下区和小脑中心核等区域[4]。G-CSF结合其受体后激活细胞内多种信号转导通路激活下流底物,然后影响细胞的增殖、分解和存活,发挥发动造血干细胞及骨髓间充质干细胞、抗凋亡、抗炎、诱导神经发作及血管生成等神经维护效果。

2 G-CSF的神经维护效果

2.1 发动造血干细胞及骨髓间充质细胞

G-CSF可发动造血干细胞(hemopoietic stem cells,HSCs)及骨髓间充质细胞(bone marrow mesenchymal stem cells,BM-MSCs)从骨髓进入血液循环中发挥效果。G-CSF的运用可減少动物脑梗死面积,进步存活率,或许与造血干细胞的发动有关。有研讨标明[5-7],造血干细胞存在于骨髓HSCs龛内,经过彼此粘附锚定。To LB等[5]研讨标明G-CSF可经过巨噬细胞介导和肾上腺素能的交感神经通路发动HSCs,经过削减骨髓中特定的巨噬细胞,开释蛋白水解酶来切开趋化因子,使其失活,一起激活补体级联反响及溶栓途径,然后削弱粘附;另一方面,G-CSF可添加交感神经通路介导的HSCs开释的昼夜规则峰值。Pierce H等[8]研讨发现,G-CSF或许经过骨髓微环境中毒蕈碱的受体Ⅰ型信号传导途径诱导的HSC搬迁,且在中枢神经体系中经过下丘脑-垂体-肾上腺轴来调理来自骨髓中的HSC发动,长时刻调控中枢神经体系中HSC的搬迁,然后完成神经维护。陆英等[9]选用缺血性脑梗死的大鼠模型发现,腹腔打针G-CSF可减小大鼠梗死灶体积,一起,在脑梗死部位呈现CD34+单个核细胞滋润并有向神经样细胞成长分解的趋势。Wu CC等[10]研讨经过阿尔兹海默病小鼠模型发现G-CSF可发动HSC及BM-MSC进入血液循环并进入大脑,而只要发动的BM-MSC参加神经发作,此发现或许为未来内源性干细胞运用打下了根底。

2.2 抗凋亡

G-CSF可以激活多种独立抗凋亡途径,其间包含JAK/STAT、Ras/MAPK和PI3K/Akt信号通路[1]。经过活化Janus激酶进而激活转录因子STAT3,发作信号转导级联,然后按捺细胞凋亡。Ghorbani M等[11]经过一氧化碳中毒脑损害大鼠模型发现G-CSF可削减皮质区神经细胞凋亡及Caspase 3的表达,一起检测到STAT3和磷酸化的STAT3表达水平升高。别的,G-CSF对PI3K/Akt和细胞外调理蛋白激酶(ERK)宗族的ERK1/2具有激活的效果[12]。另一方面,有研讨标明,G-CSF在中枢神经体系中对T细胞介导的炎性和脱髓鞘性疾病有潜在的维护效果。Peng W等[13]选用实验性过敏性脑脊髓炎小鼠模型研讨提示G-CSF或许诱导本身反响性T细胞的细胞周期从静息的G0或G1期进入到S期,促进本身反响性T细胞凋亡然后按捺其增殖。

2.3 抗炎

众所周知,脑损害诱发大脑及外周安排的免疫细胞发作炎症反响,来自外周安排的免疫细胞如中性粒细胞、单核及巨噬细胞滋润至脑本质内开释炎症因子引起损害,而小胶质细胞是中枢神经体系内的免疫细胞,依据不同表型在脑损害引起的炎症反响进程中起关键效果,Th1表型小胶质细胞开释促炎因子及氧化介质损害神经元,而Th2表型小胶质细胞开释神经养分因子促进脑功用康复[14]。Song S等[15]经过伤口性脑损害模型观察到G-CSF经过活化小胶质细胞向受损部位搬迁并发作神经养分因子完成修正功用。很多研讨标明,G-CSF可按捺炎症介质的发作[16-18]。Strecker JK等[18]在MCAO小鼠模型中证明,独自运用G-CSF医治可使脑功用得到改进、减小梗死体积、添加血管安稳性、削减炎症反响。Solaroglu I等[17]研讨标明G-CSF医治显着按捺神经元TNFα和IL-1β的表达。Li L等[16]在重生大鼠缺血缺氧模型中发现给予G-CSF医治后削减促炎细胞因子IKKβ、NF-κB、TNF-α、IL-1β和IL-12、增强抗炎细胞因子IL-10的表达。Lu F等[19]发现在沙鼠模型中,运用G-CSF可下降TNFα水平按捺炎症,减轻急性短暂性前脑缺血的感觉运动缺点,且呈剂量依赖性,在缺氧缺血早产绵羊模型中也观察到G-CSF减轻脑部的炎症反响[20]。

2.4 诱导神经发作

大脑缺血缺氧后发作神经元的坏死或凋亡,G-CSF与成年神经干细胞表达的G-CSFR彼此效果,促进神经发作[21-22]。Song S等[15]在伤口性脑损害小鼠模型中发现G-CSF的运用可使海马重生神经元数量添加,以及大脑两边纹状体和额叶皮质中的星形细胞增多症和小胶质细胞增生,然后改进小鼠学习回忆功用。Griva M等[23]发现G-CSF与丰厚的周围环境联合影响在缺氧缺血的重生大鼠模型中进一步增强了其认知功用。晚年缺血性脑卒中小鼠模型研讨[24]发现,缓慢期运用G-CSF与干细胞因子合用添加了梗死区远端树突密度,诱导并从头衔接神经元网络。

2.5 促进血管再生

缺血性脑卒中患者一般随同血脑屏障的损坏及内皮细胞的损害,G-CSF可以经过促进血管生成及安稳血脑屏障,进而削减梗死面积,影响神经功用的修正。现在研讨标明血管内皮成长因子(VEGF)是血管生成的重要因素[22]。Chu H等[25]研讨发现在颅内出血的小鼠模型中,G-CSF可经过上调血肿周围VEGF的表达水平,发挥神经维护的效果。多项大鼠大脑中动脉阻塞模型研讨证明G-CSF的运用使VEGF及其相关受体表达增强,提示存在促血管生成效果[26-27]。

3 G-CSF在多种神经损害性疾病中的临床运用

3.1 脑卒中

脑卒中是多种脑血管疾病的严峻表现形式,具有极高的致残率和较高的致死率,是当今世界损害人类生命健康的最主要疾病之一[28]。多项体表里实验现已显现G-CSF在实验性卒中模型中可削减病变体积并改进神经运动功用结局。但是,其现在在脑卒中患者中的效果及安全性依然不确定。Mizuma A等[29]进行了Ⅱ期临床实验,选取了急性缺血性中风患者49例,选用不同剂量的G-CSF进行医治,终究依据梗死面积、神经运动功用评分等方面进行评价发现G-CSF有杰出的耐受性,但与对照组比较,效果方面无显着差异。别的,Fan ZZ等[30]的荟萃研讨纳入了10项RCT研讨,成果提示G-CSF的耐受性杰出,有助于进步脑卒中患者的美国国立卫生研讨院卒中量表(NIHSS)和改进Rankin量表(mRS)评分、CD34+和白细胞计数的添加。但是,Barthel指数评分及严峻不良事情方面没有显着差异。Shin YK等[31]选用G-CSF联合促红细胞生成素(EPO)医治缓慢脑卒中患者,随访6个月后观察到G-CSF联合EPO医治组较对照组进步了优势手的握力,一切患者未发作汗水管及造血体系的不良事情。

3.2 肌萎缩性侧索硬化

肌萎缩性侧索硬化是一种运动神经元进行性损失的神经退行性疾病,其临床表现多为运动缺点和肌肉消瘦,大都因呼吸衰竭而逝世,现在仍无卓有成效的医治药物或计划。Duning T等[32]10例确定性ALS患者进行双盲、对照的随机实验研讨提示皮下打针G-CSF医治或是可行的。尽管对临床材料的探究性剖析显现无显着效果,但DTI丈量成果提示微结构神经损害可得到改进。Chio A等[33]的多中心研讨也标明G-CSF医治ALS效果切当且较安全。经G-CSF医治的患者促炎细胞因子MCP-1和IL-17水平下降,标明G-CSF诱导中枢性抗炎反响,而这些研讨或许对运用成长因子医治ALS的进一步临床实验发作严重影响。

3.3脊髓损害

脊髓损害是一种常见的伤口性疾病,其病理生理表现为直接挫裂和压榨为特色的初度机械损害和随后数分钟内即发作的可以继续数天的细胞、分子水平的二次损害,包含炎症渗出、神经元坏死和凋亡等,导致患者呈现神经麻木和瘫痪[34]。急性期时G-CSF可按捺神经细胞凋亡和炎性细胞因子的表达[35];亚急性期,Takahashi H等[36]研讨标明G-CSF经过发动外周血中的干细胞按捺脊髓损害引起的凋亡及脱髓鞘,促進血管再生,改进肢体功用。根据这些发现,多项研讨[37, 38]进行了Ⅰ/Ⅱa期临床实验,提示G-CSF的运用是安全有用的,且可以改进神经功用的康复。Ropper AE等[39]在24例胸段脊髓损害患者中发现,与对照组比较,G-CSF组肌肉力气和痛苦感觉显着改进。

4 G-CSF在重生儿缺氧缺血性脑损害实验中的研讨

缺氧缺血性脑损害(hypoxia ischemia brain damage,HIBD)是由脑血流损坏和缺氧引起的,重生儿的大脑防护功用尚不完善,较成人更简单遭到缺血缺氧的影响,导致神经体系损害(如学习妨碍、癫痫、智力低下、脑瘫等)乃至逝世危险添加。在HIBD的重生动物模型中,粒细胞集落影响因子能经过抗凋亡、按捺皮质酮组成、减轻炎症、安稳血脑屏障等效果改进神经功用[16,40,41]。Fathali N等[42]在HIBD重生大鼠模型研讨标明,皮下打针G-CSF可以促进细胞成长,避免脑萎缩,改进感觉、运动协调性、回忆力等结局。Charles MS等[40]发现G-CSF可以经过激活JAK2 / PI3K / PDE3B通路按捺皮质酮组成然后减小重生鼠脑梗死面积。Li L等[16]在HIBD重生大鼠模型中发现G-CSF或许经过激活PI3K/Akt继而使GSK-3β失活来下调炎症因子的表达和安稳血脑屏障。别的,在Doycheva DM等[43]的研讨中证明G-CSF联合抗中性粒细胞抗体医治可以削减梗死体积,改进神经功用的一起可削减嗜中性粒细胞计数,进步药物运用安全性。

5 总结与展望

很多研讨标明,G-CSF存在潜在的神经维护效果,但其背面的分子生物学机制是彼此效果、彼此影响的,现在仍知之甚少,有待进一步清晰。在多种神经损害的动物模型中,G-CSF现已证明经过抗凋亡、抗炎、诱发神经再发作和血管再生等方面发挥神经维护的效果。近年来,国表里选用G-CSF医治神经损害性疾病已进行了Ⅰ、Ⅱ期临床实验,在肌萎缩性侧索硬化、脊髓损害等疾病中观察到安全且改进神经功用结局的效果,而缺血性脑卒中方面暂未见到显着效果,这仍需求进行大样本对照实验以验证及完善其安全性和效果,进一步进行长时刻的纵向研讨来清晰G-CSF的潜在好处。在缺氧缺血性脑损害重生大鼠模型中,G-CSF的神经维护效果已得到了多项研讨的证明,但仍有必要进一步探究G-CSF运用的安全性、最佳剂量、最佳医治时刻窗、潜在医治靶点及联合用药等方面。总归,G-CSF作为新式神经维护剂之一,在多种神经损害性疾病的医治及改进预后方面具有强壮的临床远景。

[参考文献]

[1] Solaroglu I,Digicaylioglu M,Keles GE,et al. New missions for an old agent: Granulocyte-colony stimulating factor in the treatment of stroke patients[J]. Curr Med Chem,2015,22(10):1302-1309.

[2] Dale DC.The discovery,development and clinical applications of granulocyte colony-stimulating factor[J].Trans Am Clin Climatol Assoc,1998,109:27-36, 36-38.

[3] Avalos BR.Molecular analysis of the granulocyte colony-stimulating factor receptor[J].Blood,1996,88(3):761-777.

[4] Schneider A, Kruger C, Steigleder T, et al.The hemato- poietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis[J].J Clin Invest,2005,115(8):2083-2098.

[5] To LB, Levesque JP, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly[J].Blood,2011,118(17):4530-4540.

[6] Ratajczak MZ, Kim CH, Wojakowski W,et al.Innate immunity as orchestrator of stem cell mobilization[J]. Leukemia,2010,24(10):1667-1675.

[7] Levesque JP, Helwani FM, Winkler IG. The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization[J]. Leukemia,2010,24(12):1979-1992.

[8] Pierce H, Zhang D, Magnon C, et al. Cholinergic signals from the CNS Regulate G-CSF-Mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay[J]. Cell Stem Cell,2017,20(5):648-658.

[9] 陆英,钟雪云,歐瑞明,等. 粒细胞集落影响因子发动骨髓干细胞医治大鼠缺血性脑梗死[J].我国病理生理杂志,2004,20(4):560-565.

[10] Wu CC, Wang IF, Chiang PM, et al.G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in alzheimer's disease mice via CXCR4/SDF-1 chemotaxis[J]. Mol Neurobiol,2017,54(8):6198-6212.

[11] Ghorbani M, Mohammadpour AH, Abnous K, et al. G-CSF administration attenuates brain injury in rats following carbon monoxide poisoning via different mechanisms[J]. Environ Toxicol,2017,32(1):37-47.

[12] Su J, Zhou H, Tao Y, et al. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling[J]. PLoS One,2015,10(4):e120707.

[13] Peng W. G-CSF treatment promotes apoptosis of autoreactive T cells to restrict the inflammatory cascade and accelerate recovery in experimental allergic encephalomyelitis[J].Exp Neurol,2017,289(2017):73-84.

[14] Savitz SI, Cox CJ. Concise review: Cell therapies for stroke and traumatic brain injury: Targeting microglia[J]. Stem Cells,2016,34(3):537-542.

[15] Song S, Kong X, Acosta S, et al. Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by recruitment of microglia and increasing neurotrophic factor expression[J].Restor Neurol Neurosci,2016,34(3):415-431.

[16] Li L, Mcbride DW, Doycheva D, et al. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3beta signaling pathway following neonatal hypoxia-ischemia in rats[J].Exp Neurol,2015,272(2015):135-144.

[17] Solaroglu I, Cahill J, Tsubokawa T, et al. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation[J].Neurol Res,2009,31(2):167-172.

[18] Strecker JK, Olk J, Hoppen M, et al. Combining growth factor and bone marrow cell therapy induces bleeding and alters immune response after stroke in mice[J]. Stroke,2016,47(3):852-862.

[19] Lu F, Nakamura T, Toyoshima T, et al. Neuroprotection of granulocyte colony-stimulating factor during the acute phase of transient forebrain ischemia in gerbils[J]. Brain Res,2014,1548(2014):49-55.

[20] Jellema RK, Lima PV, Ophelders DR, et al. Systemic G-CSF attenuates cerebral inflammation and hypomyelination but does not reduce seizure burden in preterm sheep exposed to global hypoxia-ischemia[J].Exp Neurol,2013,250(2013):293-303.

[21] Sanchez-Ramos J, Song S, Sava V, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice[J]. Neuroscience,2009,163(1):55-72.

[22] Jung KH, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation[J]. Brain Res,2006,1073-1074(2006):190-201.

[23] Griva M, Lagoudaki R, Touloumi O, et al. Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior,BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF[J]. Brain Res,2017,1667(2017):55-67.

[24] Cui L, Murikinati SR, Wang D, et al. Reestablishing neuronal networks in the aged brain by stem cell factor and granulocyte-colony stimulating factor in a mouse model of chronic stroke[J].PLo S One,2013,8(6):e64684.

[25] Chu H, Tang Y, Dong Q. Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: Effects of vascular endothelial growth factor and aquaporin-4[J].Neuroscience,2014,260(2014):59-72.

[26] Dela PI, Yoo A, Tajiri N,et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis[J].J Cereb Blood Flow Metab,2015,35(2):338-346.

[27] Sun BL, He MQ, Han XY,et al. Intranasal delivery of granulocyte colony-stimulating factor enhances its neuroprotective effects against ischemic brain injury in rats[J]. Mol Neurobiol,2016,53(1):320-330.

[28] 趙冬. 我国人群脑卒中发病率、逝世率的流行病学研讨[J]. 中华流行病学杂志,2003,24(3):236-239.

[29] Mizuma A, Yamashita T, Kono S, et al. Phase II trial of intravenous sow-dose granulocyte colony-stimulating factor in acute ischemic stroke[J]. J Stroke Cerebrovasc Dis,2016,25(6):1451-1457.

[30] Fan ZZ, Cai HB, Ge ZM,et al. The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke[J].J Stroke Cerebrovasc Dis,2015,24(8):1701-1708.

[31] Shin YK, Cho SR. Exploring Erythropoietin and G-CSF combination therapy in chronic stroke patients[J]. Int J Mol Sci,2016,17(4):463.

[32] Duning T, Schiffbauer H, Warnecke T, et al. G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: A pilot trial[J]. PLoS One,2011,6(3):e17770.

[33] Chio A,Mora G,La Bella V,et al.Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis:Clinical and biological results from a prospective multicenter study[J]. Muscle Nerve,2011,43(2):189-195.

[34] 孔祥溢,高俊,楊义,等. 甲基泼尼松龙在医治急性脊髓损害中的运用及研讨进展[J]. 我国医学科学院学报,2014,36(6):680-685.

[35] Guo Y,Liu S,Wang P,et al. Granulocyte colony-stimulating factor improves neuron survival in experimental spinal cord injury by regulating nucleophosmin-1 expression[J].J Neurosci Res,2014,92(6):751-760.

[36] Takahashi H,Koda M,Hashimoto M,et al. Transplanted peripheral blood stem cells mobilized by granulocyte colony-stimulating factor promoted hindlimb functional recovery after spinal cord injury in mice[J].Cell Transplant,2016,25(2):283-292.

[37] Kamiya K, Koda M,Furuya T,et al. Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: A comparison with high-dose methylprednisolone as a historical control[J].Eur Spine J,2015,24(5):963-967.

[38] Takahashi H, Yamazaki M, Okawa A, et al. Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial[J]. Eur Spine J,2012,21(12):2580-2587.

[39] Ropper AE, Chi JH. Granulocyte-stimulating colony factor neuroprotection for thoracic myelopathy[J]. Neurosurgery,2012,71(6):N21-N22.

[40] Charles MS, Drunalini PP, Doycheva DM, et al. Granulocyte-colony stimulating factor activates JAK2/PI3K/PDE3B pathway to inhibit corticosterone synthesis in a neonatal hypoxic-ischemic brain injury rat model[J].Exp Neurol,2015, 272(2015):152-159.

[41] Li L, Klebe D,Doycheva D, et al. G-CSF ameliorates neuronal apoptosis through GSK-3beta inhibition in neonatal hypoxia-ischemia in rats[J]. Exp Neurol,2015, 263(2015):141-149.

[42] Fathali N,Lekic T, Zhang JH, et al. Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats[J]. Intensive Care Med,2010,36(9):1602-1608.

[43] Doycheva DM, Hadley T, Li L, et al. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model[J].Neurobiol Dis,2014,69(2014):192-199.

(收稿日期:2018-01-12)

相关资讯
最新新闻
关闭